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Abstract

Classically, Shannon entropy was formalized over discrete probabil-
ity distributions. However, the concept of entropy can be extended to
continuous distributions through a quantity known as continuous (or dif-
ferential) entropy. The most common definition for continuous entropy is
seemingly straightforward; however, further analysis reveals a number of
shortcomings that render it far less useful than it appears. Instead, rela-
tive entropy (or KL divergence) proves to be the key to information theory
in the continuous case, as the notion of comparing entropy across prob-
ability distributions retains value. Expanding off this notion, we present
several results in the field of maximum entropy and, in particular, con-
clude with an information-theoretic proof of the Central Limit Theorem
using continuous relative entropy.

1 Introduction

Much discussion of information theory implicitly or explicitly assumes the (ex-
clusive) usage of discrete probability distributions. However, many of infor-
mation theory’s key results and principles can be extended to the continuous
case–that is, to operate over continuous probability distributions. In particular,
continuous (or differential) entropy is seen as the continuous-case extension of
Shannon entropy. In this paper, we define and evaluate continuous entropy,
relative entropy, maximum entropy, and several other topics in continuous in-
formation theory, concluding with an information-theoretic proof of the Central
Limit Theorem using the techniques introduced throughout.

1.1 Goals

More specifically, our goals are as follows:

1. Introduce and evaluate a definition for continuous entropy.
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2. Discuss some results of maximum entropy (i.e., for distributions with fixed
mean, fixed variance, finite support, etc.).

3. Derive the Central Limit Theorem using information-theoretic principles.

2 Continuous Entropy

2.1 A Definition

Information theory truly began with Shannon entropy, i.e., entropy in the dis-
crete case. While we will not review the concept extensively, recall the definition:

Definition (Shannon entropy). The Shannon entropy h(X) of a discrete ran-
dom variable X with distribution P (x) is defined as:

H(X) = ΣiP (xi) log 1
P (xi)

The formula for continuous entropy is a (seemingly) logical extension of the
discrete case. In fact, we merely replace the summation with an integral.

Definition (Continuous entropy). The continuous entropy h(X) of a continu-
ous random variable X with density f(x) is defined as:

h(X) =
∫
S
f(x) log 1

f(x)dx

where S is the support set of the random variable.[6] As shorthand, we can also
write H(f) = H(X), where random variable X has distribution f(x).

To see how continuous entropy operates in the wild, consider the following
example.

2.2 An Example: The Uniform Distribution

Allow f to be the uniform distribution on [a, b]. That is:

f(x) =

{
1
b−a , for x ∈ [a, b]

0, else

Let’s solve for the continuous entropy of this distribution.

h(f) =

∫
S

f(x) log
1

f(x)
dx

=

∫ b

a

1

b− a
log (b− a)dx

=
1

b− a
log (b− a)

∫ b

a

dx

= log (b− a)

Informally, the continuous entropy of the uniform distribution is equal to
the log of the width of the interval.
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2.3 Weaknesses

The definition of continuous entropy provided seems to follow quite naturally
from Shannon entropy. But rigorously, how well does it help up? Is it a “good”
extension of Shannon entropy?

As we’ll show, there are a number of ‘kinks’ or weaknesses with our definition
of continuous entropy. In the discrete case, we had a set of axioms from which we
derived Shannon entropy and thus a bunch of nice properties that it exhibited.
In the continuous case, however, our definition is highly problematic–to the
point that, on its own, it may not be an entirely useful mathematical quantity.

2.3.1 Shannon entropy in the Limit

As mentioned earlier, Shannon entropy was derived from a set of axioms. But
our definition for continuous entropy was provided with no such derivation.
Where does the definition actually come from?

The natural approach to deriving continuous entropy would be to take dis-
crete entropy in the limit of n, the number of symbols in our distribution. This
is equivalent to rigorously defining integrals in calculus using a Reimannian ap-
proach: it makes sense that the continuous case would come from extending the
discrete case towards infinity.

To begin, we discretize our continuous distribution f into bins of size ∆. By
the Mean Value Theorem, we get that there exists an xi such that f(xi)∆ =∫ (i+1)∆

i∆
f(x)dx. This implies that we can approximate f by a Reimann sum:∫ ∞

−∞
f(x)dx = lim

∆→0
Σ∞i=−∞f(xi)∆

Claim. Continuous entropy differs from Shannon entropy in the limit by a
potentially infinite offset.

Proof.

H∆ = − lim
∆→0

Σ∞i=−∞f(xi)∆ log (f(xi)∆)

= − lim
∆→0

Σ∞i=−∞f(xi)∆ log (f(xi))− lim
∆→0

Σ∞i=−∞f(xi)∆ log ∆

lim
∆→0

Σ∞i=−∞f(xi)∆ =

∫ ∞
−∞

f(x)dx = 1

lim
∆→0

Σ∞i=−∞f(xi)∆ log (f(xi)) =

∫ ∞
−∞

f(x) log f(x)dx

H∆ = −
∫ ∞
−∞

f(x) log f(x)dx− lim
∆→0

Σ∞i=−∞f(xi)∆

Ideally, we’d have that H∆ were equal to our definition for continuos entropy,
as it represents Shannon entropy in the limit. But note that log (∆)→ −∞ as
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∆ → 0. As a result, the right term will explode. So instead, we need a special
definition for continuous entropy:

h(f) = lim
∆→0

(H∆ + log ∆) = −
∫ ∞
−∞

f(x) log f(x)dx

In this sense, continuous entropy differs in the limit by an infinite offset!

This demonstrates that the formula for continuous entropy is not a deriva-
tion of anything, unlike Shannon entropy–it’s merely the result of replacing
the summation with an integration.[8] This result may not be a problem in and
of itself, but it helps to explain some of the proceeding difficulties with the
definition.

2.3.2 Variable Under Change of Coordinates

h(X) is variant under change of variables. Depending on your coordinate sys-
tem, a distribution might have a different continuous entropy. This shouldn’t
be the case–but it is. Informally, this means that the same underlying distribu-
tion, represented with different variables, might not have the same continuous
entropy.

To understand why, note that the probability contained in a differential area
should not alter under change of variables. That is, for x, y:

|fY (y)dy| = |fX(x)dx|

Further, define g(x) to be the mapping from x to y, and g−1(y), its inverse.
Then, we get:

Lemma 2.1. fY (y) = d
dy (g−1(y))fX(g−1(y))

Proof.

fY (y) =
dx

dy
fX(x)

=
d

dy
(x)fX(x)

=
d

dy
(g−1(y))fX(g−1(y))

We’ll use this fact in the following example[2]: Say, abstractly, that you have
an infinite distribution of circles. Let p(x) be the distribution of their radii and
q(w), the distribution of their areas. Further, x(w) =

√
w
π and w(x) = πx2.

You’d expect this distribution to have the same continuous entropy regardless
of its representation, In fact, we’ll show that H(p) 6= H(q).

Claim. H(p) 6= H(q)
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Proof.

p(x) = | d
dx

(g−1(x))|q(w)

= w′(x)q(w)

= 2xπq(w)

Thus: q(w) =
p(x)

2xπ

Therefore: H(w) =

∫
q(w) log

1

q(w)
dw

=

∫
p(x)

2xπ
log

2xπ

p(x)
(2xπdx)

=

∫
p(x)(log (2xπ)− log (p(x)))dx

=

∫
p(x) log (2xπ)dx+

∫
p(x) log

1

p(x)
dx

= H(x) +

∫
p(x) log (2xπ)dx

6= H(x)

To quote Shannon: “The scale of measurements sets an arbitrary zero corre-
sponding to a uniform distribution over a unit volume”.[8] The implication here
is that all continuous entropy quantities are somehow relative to the coordinate
system in-use. Further, one could extend this argument to say that continu-
ous entropy is useless when viewed on its own. In particular, relative entropy
between distributions could be the valuable quantity (which we’ll see later on).

2.3.3 Scale Variant

Generalizing this result, we can also get that continuous entropy is not scale
invariant.

Theorem 2.2. If Y = αX, then h(Y ) = h(X) + log |α|.[14]

Proof.

h(Y ) = h(X)− E[log |dx
dy
|]

= h(X)− E[log
1

α
]

= h(X) + log |α|

2.3.4 Negativity & Information Content

With Shannon entropy, we had this wonderful intuition in which it represented
the ‘information content’ of a discrete distribution. That is, Shannon entropy
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could also be defined as the “expected value of the information of the distri-
bution” or the number of bits you’d need to reliably encode n symbols. In
the continuous case, this intuition deteriorates as h(X) does not give you the
amount of information in X.

To see why, note that h(X) can be negative! For example: if X is uniformly
distributed in [0, 1

2 ], then h(X) = log ( 1
2 − 0) = log 1

2 = −1. If entropy can be
negative, how can this quantity have any relationship to the information content
of X?

2.4 An Alternative Definition

E.T. Jaynes[8] argued that we should define an invariant factor m(X) that
defines the density (note: not probability density) of a discrete distribution in
the limit.

Definition. Suppose we have a discrete set {xi} of an increasingly dense dis-
tribution. The invariant factor m(X) is defined as:

limn→∞
1
n(number of points in a < x < b) =

∫ b
a
m(x)dx

This would give us an alternative definition of continuous entropy that is
invariant under change of variables.

Definition. Let X be a random variable with probability distribution p(X). An
alternative definition of the entropy H(X) follows:

H(X) = −
∫
S
p(x) log p(x)

m(x)dx

where S is the support set of X.

We provide this definition solely for educational purposes. The rest of the
paper will assume that H(X) =

∫
S
p(x) log 1

p(x)dx.

2.5 Continuous Relative Entropy (KL divergence)

Despite the aforementioned flaws, there’s hope yet for information theory in the
continuous case. A key result is that definitions for relative entropy and mutual
information follow naturally from the discrete case and retain their usefulness.

Let’s go ahead and define relative entropy in the continuous case, using the
definition in [6].

Definition. The relative entropy D(f ||g) of two PDFs f and g is defined as:

D(f ||g) =
∫
S
f(x) log f(x)

g(x)dx

where S is the support set of f . Note that D(f ||g) = 0 if supp(g) 6∈ supp(f).
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2.5.1 Non-Negativity of Relative Entropy

Importantly, relative entropy remains non-negative in the continuous case. We
prove this using Jensen’s Inequality[4].

Theorem 2.3. For any two distributions f and g:

D(f ||g) ≥ 0

Proof.

D(p||q) =

∫
p(x) log

p(x)

q(x)
dx

= E
p
[log

p(X)

q(X)
]

= E
p
[− log

q(X)

p(X)
]

≥ − logE
p
[
q(X)

p(X)
] by Jensen’s Inequality

= − log

∫
p(x)

q(x)

p(x)
dx

= − log

∫
q(x)dx

= − log 1

= 0

2.5.2 Using Relative Entropy to Prove Upper Bounds

Before we advance, it’s worth formalizing a key lemma that follows from the
non-negativity of relative entropy.

Lemma 2.4. If f and g are continuous probability distributions, then:

h(f) ≤ −
∫
f(x) log g(x)dx
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Proof. Using relative entropy.

D(f ||g) =

∫
f(x) log

f(x)

g(x)
dx

=

∫
f(x)(log (f(x))− log (g(x)))dx

=

∫
f(x) log (f(x))dx−

∫
f(x) log (g(x))dx

= −
∫
f(x) log

1

(f(x))
dx−

∫
f(x) log (g(x))dx

= −h(x)−
∫
f(x) log (g(x))dx

= −h(x)−
∫
f(x) log (g(x))dx

≥ 0

Therefore: h(x) ≤ −
∫
f(x) log (g(x))dx

We can use this lemma to prove upper bounds on the entropy of probability
distributions given certain constraints. Examples will follow in the proceeding
sections.

2.6 Continuous Mutual Information

We can use our definition of relative entropy to define mutual information for
continuous distributions as well. Recall that in the discrete case, we had:

I(X;Y ) = D(p(x, y)||p(x)p(y))

We’ll use this statement to define mutual information for continuous distributions[6].

Definition. The mutual information I(X;Y ) of two random variables X and
Y drawn from continuous probability distributions is defined as:

I(X;Y ) = D(p(x, y)||p(x)p(y))

=

∫
p(x, y) log

p(x, y)

p(x)p(y)
dx

3 Maximum Entropy

Now that we’ve defined and analyzed continuous entropy, we can now focus
on some interesting results that follow from our formulation. Recall that the
entropy of a continuous distribution is a highly problematic quantity as it is
variant under change of coordinates, potentially non-negative, etc. The true
quantity of interest, then, is the relative entropy between (sets of) distributions.
This leads us to examine the problem of maximum entropy, defined in [5] as
follows:
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Definition. The maximum entropy problem is to find a probability distribution
that maximizes entropy satisfying some set of constraints.

Intuitively, the maximum entropy problem focuses on finding the “most ran-
dom” distribution under some conditions. For example, finding the maximum
entropy among all distributions with mean λ, or all distributions with variance
σ2. (Incidentally, both of these constraints yield interesting solutions.)

We further motivate maximum entropy by noting the following from [16]:

1. Maximizing entropy will minimize the amount of “prior information” built
into the probability distribution.

2. Physical systems tend to move towards maximum entropy as time pro-
gresses.

3.1 Maximum Entropy on an Interval

The first constraint we will examine is that of finite support. That is, lets find
the distribution of maximum entropy for all distributions with support limited
to the interval [a, b].

Recall that in the discrete case, entropy is maximized when a set of events are
equally likely, i.e., uniformly distributed. Intuitively, as the events are equiprob-
able, we can’t make any educated guesses about which event might occur; thus,
we learn a lot when we’re told which event occurred.

In the continuous case, the result is much the same.

Claim. The uniform distribution is the maximum entropy distribution on any
interval [a, b].

Proof. From [14]: Suppose f(x) is a distribution for x ∈ (a, b) and u(x) is the
uniform distribution on that interval. Then:

D(f ||u) =

∫
f(x) log

f(x)

u(x)
dx

=

∫
f(x)(log (f(x))− log (u(x)))dx

= −h(x)−
∫
f(x) log (u(x))dx

= −h(x) + log (b− a) ≥ 0 by Theorem 2.3

Therefore, log (b− a) ≥ h(x). That is, no distribution with finite support
can have greater entropy than the uniform on the same interval.

3.2 Maximum Entropy for Fixed Variance

Maximizing entropy over all distributions with fixed variance σ2 is particularly
interesting. Variance seems like the most natural quantity to vary when dis-
cussing entropy. Intuitively, if entropy is interpreted as a barometer for the
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‘randomness’ of a distribution, then it would hopefully have some significant
relationship to variance.

Recall (or see [13]) that the normal distribution with mean µ and variance
σ2 is defined as:

f(x) =
1√

2πσ2
exp {− (x− µ)2

2σ2
}

We will prove (from [5]) that the normal maximizes entropy.

Theorem 3.1. The normal distribution maximizes entropy for all distributions
with fixed variance σ2 and mean µ.

Proof. Again, we use relative entropy. Consider some distribution f and the
normal distribution φ.

It is easily verified that the normal distribution φ with mean µ and variance
σ2 has entropy equal to h(φ) = 1

2 log (2πeσ2).
Combining this result with Lemma 2.4, we get:

h(f) ≤ −
∫
f(x) log (φ(x))dx

≤ −
∫
f(x) log (

1√
2πσ2

exp {− (x− µ)2

2σ2
})dx

≤ −
∫
f(x)(log (exp {− (x− µ)2

2σ2
}) + log (

1√
2πσ2

))dx

≤ −
∫
f(x)(− (x− µ)2

2σ2
− 1

2
log (2πσ2))dx

≤
∫
f(x)

(x− µ)2

2σ2
dx+

1

2
log (2πσ2)

∫
f(x)dx

≤ 1

2σ2

∫
f(x)(x− µ)2dx+

1

2
log (2πσ2)

As

∫
f(x)(x− µ)2dx is the variance of f :

≤ 1

2
log (2πσ2) +

1

2

=
1

2
log (2πeσ2)

= h(φ)

Therefore, the entropy of f must be less than or equal to the entropy of the
normal distribution with identical mean and variance.

3.3 Maximum Entropy for Fixed Mean

As another example, consider the following problem in which we put a constraint
on the mean of the distribution: Find the continuous probability density function
p of maximum entropy on (0,∞) with mean 1

λ .
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Claim. The exponential distribution with parameter λ maximizes entropy on
(0,∞) for distributions with mean 1

λ

Proof. Consider the exponential distribution q with parameter λ (and, conse-
quently, mean 1

λ ). It is easily verified that h(q) = log 1
λ + 1.

Let p be some other distribution on (0,∞) with mean 1
λ . Then, by Lemma

2.4:

h(p) ≤ −
∫
p(x) log (q(x))dx

≤ −
∫
p(x) log (λe−λx)dx

≤ −
∫
p(x)(log λ+ log e−λx)dx

≤
∫
p(x)(log

1

λ
− log e−λx)dx

≤ log
1

λ
+

∫
p(x)λxdx

≤ log
1

λ
+ λ

∫
p(x)xdx

≤ log
1

λ
+ λE[X]

≤ log
1

λ
+ 1

= h(q)

4 The Central Limit Theorem

We start with an informal definition of the Central Limit Theorem, motivated
by [7].

Definition. The Central Limit Theorem (CLT) states that the distribution of
the mean of a sample of i.i.d. random variables will approach normal in the limit.
Specifically, if our variables Xi have mean µ and variance σ2, the arithmetic
mean will approach normal with parameters (µ, σ2/n).

The CLT has massive implications within statistics. Intuitively, it says that
the distribution of the standardized sum of a bunch of Xis will be normal
regardless of the shape of the Xis themselves. This allows us to make normality
assumptions fairly often when handling real-world data.

In this paper, we prove the version of the CLT defined in [2].

Claim. Let X1, X2, ... be i.i.d. random variables with mean µ and variance
σ2. Further, let Sn =

√
n[(Σni=1Xi)/n−µ] be the standardized sum (that is, the

convolution of the Xis divided by
√
n). We claim that the underlying distribution

of Sn approaches normal with mean 0 and variance σ2 as n→∞.
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For the rest of the proof, we assume that µ = 0, and thus Sn = Σni=1Xi/
√
n,

as µ is simply a shifting factor. If Sn is normal for µ = 0, then it will be normal
for any µ, as this factor just modifies the center of the distribution.

4.1 Overview

Typically, proofs of the CLT use inverse Fourier transforms or moment generat-
ing functions, as in [11]. In this paper, we’ll use information-theoretic principles.

The broad outline of the proof will be to show that the relative entropy of
Sn with respect to a normal distribution φ goes to zero.

To see that this is sufficient to prove the CLT, we use Pinkser’s Inequality
(from [10]).

Theorem 4.1 (Pinsker’s Inequality). The variational distance between two
probability mass functions P and Q, defined as:

d(P,Q) = Σx∈X |P (x)−Q(x)|

is bounded above the relative entropy between the two distributions in the sense
that

D(P ||Q) ≥ 1
2d

2(P,Q)

Thus, if limn→∞D(Sn||φ) = 0, then the distance d(P,Q) between the two
distributions goes to 0. In other words, Sn approaches the normal.

(Note: from here onwards, we’ll define D(X) = D(f ||φ), where X has dis-
tribution f .)

To begin the proof, we provide a number of definitions and useful lemmas.

4.2 Fisher Information and its Connection to Entropy

Fisher Information is a useful quantity in the proof of the Central Limit Theo-
rem. Intuitively, Fisher Information is the minimum error involved in estimating
a parameter of a distribution. Alternatively, it can be seen as a measurement of
how much information a random variable X carries about a parameter θ upon
which it depends.

We provide the following definitions. While they will be necessary in our
proofs, it is not imperative that you understand their significance.

Definition. The standardized Fisher information of a random variable Y with
density g(y) and variance σ2 is defined as

J(Y ) = σ2 E[ρ(Y )− ρσ(Y )]2

where φ = g′/g is the score function for Y and ρσ = φ′/φ is the score
function for the normal with the same mean and variance as Y .[2]

Definition. The Fisher information is defined in [2] as

I(Y ) = E[ρ2(Y )]
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Alternatively, from [12]:

I(Y ) =
∫∞
−∞( f

′(y)
f(y) )2f(y)dy

where the two quantities are related by I = (J + 1)/σ2.

4.3 Relationship Between Relative Entropy and Fisher Informa-
tion

From [1], we can relate relative entropy to Fisher Information through the fol-
lowing lemma.

Lemma 4.2. Let X be a random variable with finite variance. Then:

D(X) =

∫ 1

0

J(
√
tX +

√
1− tZ)

dt

2t
, t ∈ (0, 1)

=

∫ ∞
0

J(X +
√
τZ)

dτ

1 + τ
, τ =

t

1− t
, τ ∈ (0, 1)

This connection will be key in proving the Central Limit Theorem.

4.4 Convolution Inequalities

Again from [1] (drawing on [3] and [15]), we have the following result:

Lemma 4.3. If Y1 and Y2 are random variables and αi ≥ 0, α1 +α2 = 1, then
I(
√
α1Y1 +

√
α2Y2) ≤ α1I(Y1) + α2I(Y2).

Using this result, we can prove something stronger.

Lemma 4.4. If Y1 and Y2 have the same variance, then

J(
√
α1Y1 +

√
α2Y2) ≤ α1J(Y1) + α2J(Y2)

and

J(Σi
√
αiYi) ≤ ΣiαiJ(Yi)

Proof. Recall that I = (J + 1)/σ2. Then:

I(
√
α1Y1 +

√
α2Y2) ≤ α1I(Y1) + α2I(Y2)

(J(
√
α1Y1 +

√
α2Y2) + 1)/σ2 ≤ α1(J(Y1) + 1)/σ2 + α2(J(Y2) + 1)/σ2

J(
√
α1Y1 +

√
α2Y2) + 1 ≤ α1(J(Y1) + 1) + α2(J(Y2) + 1)

J(
√
α1Y1 +

√
α2Y2) + 1 ≤ α1J(Y1) + α2J(Y2) + (α1 + α2)

J(
√
α1Y1 +

√
α2Y2) + 1 ≤ α1J(Y1) + α2J(Y2) + 1

J(
√
α1Y1 +

√
α2Y2) ≤ α1J(Y1) + α2J(Y2)
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This argument can be extended to yield the stronger statement.

Next, we apply Lemma 4.4 to prove a number of helpful convolution inequal-
ities.

Lemma 4.5. D(Σi
√
αiXi) ≤ ΣiαiD(Xi)

Lemma 4.6. H(Σi
√
αiXi) ≥ ΣiαiH(Xi)

Proof. From [1]. Let Yi = Xi +
√
τZi, where Zi is the normal with the same

variance as Xi. By combining Lemma 4.5 with the equation:

D(X) =

∫ ∞
0

J(X +
√
τZ)

dτ

1 + τ

We get Lemma 4.5: D(Σi
√
αiXi) ≤ ΣiαiD(Xi). Noting that H(X) =

1
2 log (2πeσ2)−D(X) gives us Lemma 4.6.

We’ll need a few more results before we can complete the proof of the CLT.

Lemma 4.7. H(X1+...+Xm√
m

) ≥ H(X1) if the Xi are i.i.d.

Proof. Apply Lemma 4.6 with αi = 1
m .

Lemma 4.8. For any integers n = mp, H(Smp) ≥ H(Sp).

Proof. Returning to the standardized sum, we note that Smp = Σmi=0Sp/
√
m. If

we apply Lemma 4.6 with Xi = Sp and αi = 1/m, we get:

H(Smp) ≥ H(Sp)

4.5 Subadditivity of Relative Entropy for Standardized Sum

The main theorem follows.

Theorem 4.9. Let Sn be the standardized sum. Then nD(Sn) is a subadditive
sequence, and D(S2n) ≤ D(Sn). As a result, we get convergence of the relative
entropy:

limn→∞D(Sn) = 0

Proof. We divide our proof into several stages.

Subadditivity. Recall that H(Smp) ≥ H(Sp). Setting m = 2 and p = n, we get
H(S2n) ≥ H(Sn), which implies that D(S2n) ≤ D(Sn).
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Limit is infimum. Next, we prove that the limit exists and equals the infimum.
Let p be such that H(Sp) ≥ supn(H(Sn))− ε. Let n = mp+ r where r < p.

H(Smp) = H(Σmi=1Sp/
√
m)

H(Sn) = H(Smp+r)

= H(

√
mp
√
n
Smp +

√
r√
n
Sr)

≥ H(

√
mp
√
n
Smp) as samples i.i.d., entropy increases on convolution

= H(Smp) +
1

2
log (mp/n)

= H(Smp) +
1

2
log (mp/(mp+ r))

= H(Smp) +
1

2
log (1− (r/n))

≥ H(Sp) +
1

2
log (1− (r/n)) by Lemma 4.8

This quantity converges to H(Sp) as n→∞. As a result, we get that:

lim
n→∞

H(Sn) ≥ H(Sp) + 0

≥ sup
n

(H(Sn))− ε

If we let ε → 0, we get that limn→∞H(Sn) = supn(H(Sn)). From the
definition of relative entropy, we have H(Sn) = 1

2 log (2πeσ2) − D(Sn). Thus,
the previous statement is equivalent to limn→∞D(Sn) = infn(D(Sn)).

Infimum is 0. The skeleton of the proof in [2] is to show that the infimum is
0 for a subsequence of the nk’s. As the limit exists, all subsequences must
converge to the limit of the sequence, and thus we can infer the limit of the
entire sequence given a limit of one of the subsequences.

In particular, the subsequence is nk = 2kn0, implying that the goal is to
prove limk→∞D(S2kn0

) = 0. This is done by showing that limk→ ∞ J(S2kn0
+√

τZ) = 0, i.e., that J goes to zero for a subsequence of the nk’s (proven by going
back to the definition of Fisher Information). Using the relationship between D
and J demonstrated in Lemma 4.2, we get that limk→ ∞D(S2kn0

) = 0.
As the limit exists, all subsequences must converge to the limit of the se-

quence, and thus the limit of the entire sequence is 0.

With that established, we’ve proven that limn→∞D(Sn) = 0.

The significance of Theorem 4.9 is that the distribution of the standardized
sum deviates by less and less from the normal as n increases and, in the limit,
does not deviate at all. Therefore, as we sample (i.e., as we increase n), the
distribution of the standardized sum approaches the normal, proving the Central
Limit Theorem.
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5 Conclusion

Beginning with a definition for continuous entropy, we’ve shown that the quan-
tity on its own holds little value due to its many shortcomings. While the
definition was–on the surface–a seemingly minor notational deviation from the
discrete case, continuous entropy lacks invariance under change of coordinates,
non-negativity, and other desirable quantities that helped motivate the original
definition for Shannon entropy.

But while continuous entropy on its own proved problematic, comparing en-
tropy across continuous distributions (with relative entropy) yielded fascinating
results, both through maximum entropy problems and, interestingly enough,
the information-theoretic proof of the Central Limit Theorem, where the rela-
tive entropy of the standardized sum and the normal distribution was shown to
drop to 0 as the sample size grew to infinity.

The applications of continuous information-theoretic techniques are varied;
but, perhaps best of all, they allow us a means of justifying and proving results
with the same familiar, intuitive feel granted us in the discrete realm. An
information-theoretic proof of the Central Limit Theorem makes sense when we
see that the relative entropy of the standardized sum and the normal decreases
over time; similarly, the normal as the maximum entropy distribution for fixed
mean and variance feels intuitive as well. Calling on information theory to
prove and explain these results in the continuous case results in both rigorous
justifications and intuitive explanations.

Appendix

Convolution Increases Entropy. From [9]: Recall that conditioning decreases
entropy. Then, for independent X and Y , we have:

h(X + Y |X) = h(Y |X) = h(Y ) by independence

h(Y ) = h(X + Y |X) ≤ h(X + Y )
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