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Abstract
The computational linguistics community has shown resurgent interest in the re-

search of noun compounds, or sequences of nouns used to describe a single entity.
Human judges frequently encounter noun compounds, be they familiar, like co�ee cup

and park bench, or unfamiliar, like cigarette helmet and horse war. Astoundingly, even
these unfamiliar compounds are often interpretable with very little e�ort and in a man-
ner that is widely agreeable to judges. This ease of interpretation is a testament to the
productivity, generativity, and diversity of language in general and noun compounds
in particular. However, it is clear that certain combinations of nouns would produce
compounds that are not interpretable, or at least, incapable of being interpreted in a
sensible manner. For example, devising a reasonable interpretation for the compound
pork plum would be a daunting, if not impossible task. In this thesis, we test the
limits of both human creativity and noun compound productivity, asking the question:
“What makes a noun compound interpretable?” Though simple in formulation, this
question has received little attention in prior research on compounds. Our analysis
revolves around a series of experiments run on Amazon’s Mechanical Turk platform
in which human judges were asked to interpret and paraphrase binary and ternary
noun compounds that had been generated ‘at random’ using an algorithmic process.
Throughout this thesis, we analyze the results of these experiments to construct a more
complete theory of noun compound interpretability, demonstrating the usefulness of
semantic and lexical similarity-based comparisons to familiar compounds in determin-
ing the degree to which a new, unfamiliar compound is itself interpretable, as well as
the deep and even intrinsic link between the acts of paraphrasing and interpretation.

1 Introduction
Over the past few years, the Natural Language Processing (NLP) community has shown
resurgent interest in the analysis of noun compounds, or “long sequences of nouns acting as
a single noun”, such as co�ee cup, steel knife, and shoe sale [27]. Much of this interest has
stemmed from the incredible productivity, generativity, and diversity of these structures,
qualities which makes the noun compound a fascinating element of human language. For
example, even with the simple wildcard pattern (ú sale), we can generate such noun com-
pounds as shoe sale, baby sale, fire sale, and so forth, each of which involves a di�erent
semantic relationship between the two nouns: a shoe sale would typically be paraphrased as
“a sale of shoes”; a baby sale, as “a sale of clothes for babies”; and a fire sale, as “a rapid
sale of goods”, with this latter example representing an idiomatic expression.

Along with this incredible productivity, noun compounds can also be arbitrarily long–for
example, lung cancer treatment is a length-3 compound–and can be either compositional (i.e.,
with a meaning derived through some combination of the meanings of its components) or non-
compositional, as evidenced by the fire sale example, in which the meaning of the word “fire”
plays no role. But what is perhaps most fascinating about noun compounds is the relative
ease with which they are interpretable and understandable by humans: even with unfamiliar
compounds, humans are able to come up with reasonable interpretations with which other
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judges often agree. Returning to the (ú sale) example: whether or not one has encountered
the compound apple sale in the past, they will likely settle upon an interpretation along the
lines of “a sale of apples” (and do so with little di�culty or hesitation), which many judges
would find reasonable.

Given these remarkable properties, it should come as no surprise that the analysis of
noun compounds has extensive applications in language processing. For example, statistical
machine translation can be greatly aided by generating accurate paraphrases for these short
noun compounds, as seen in the work of Nakov and Hearst [27], where the authors expand
compounds like apple juice to phrases like “juice that is made from apples”, leading to
more accurate translation. Similarly, question answering systems must disambiguate noun
compounds in order to provide correct answers with any degree of certainty [1]. Returning
to the example from earlier: a question answering system that treated a baby sale as “a sale
of babies” would be useless to consumers.

1.1 Motivation
While noun compounds are an incredibly diverse and productive linguistic structure, much
of the existing research on compounds has focused on two primary tasks:

1. Developing taxonomies through which to classify noun compounds according to the
semantic relationships between their constituent components.

2. Developing techniques through which to paraphrase noun compounds.

However, academics have paid little attention to the somewhat deeper question of whether a
given noun compound has any meaning at all. In other words: given a noun compound, can
a human judge come up with a valid interpretation? Furthermore, is there one interpretation
on which human judges would agree? Or multiple?

Put di�erently: is there a limit to the productivity of noun compounds?
In a sense, these are questions that test the limits of human creativity: as discussed in

Section 1, noun compounds are incredibly productive and diverse–humans are constantly
encountering and creating new compounds, often agreeing on their semantic meaning with
impressive consistency–yet surely there are limits to what humans would consider inter-
pretable.

For example, the compound summer dispute could be reasonably interpreted as “a dispute
that takes place over the summer” or, just as reasonably, “a dispute about events in the
summer”. On the other hand, it is di�cult to provide any such valid interpretation for the
compound pork wall–any suggested interpretation would verge on or venture deeply into the
realm of nonsense.

In this thesis, we explore the questions presented above in an unprecedented attempt
to develop a more complete understanding of noun compound interpretability. Our e�orts
focus on pushing the limits of interpretability; in doing so, we employ a variety of semantic
and lexical similarity metrics, including those derived from WordNet [10], to demonstrate
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their applicability to noun compound understanding, and explore such tasks as training a
machine learning classifier to judge compound interpretability and clustering compounds
based on the grammatical structure of user-submitted paraphrases.

1.2 Outline
This thesis is structured as follows: Section 2 is used to lay out the necessary background
information, including prior research and crucial terminology; in Section 3, we present our
initial hypotheses which will be explored and expanded upon throughout the remainder of
the thesis; in Section 4, we describe the design of our experiments, which were conducted
using the Amazon Mechanical Turk platform; we then present the initial results from said
experiments in Section 5; this is followed by thorough analysis of said results in Section 6;
next, in Section 7, we compare the interpretability of semantically similar peer compounds;
we then examine the interpretability of ternary compounds, or those composed of three
words, in Section 8. We conclude with a discussion of the results in Section 9 and possible
extensions in Section 10.

2 Background
We begin by exploring the current understanding of noun compounds, including relevant
prior research, before diving into paper-specific terminology and other details that will be
crucial in parsing the remainder of this thesis.

2.1 A Primer on Noun Compounds
If a compound consists of just two words, like olive oil, it is referred to as a binary compound.
Similarly, a compound consisting of three words, like olive oil bottle, is referred to as a ternary
compound.

As a simplifying assumption, noun compound research tends to focus on the analysis of
binary compounds. This tendency is exemplified by the datasets of Hermann et al. [13],
Kim and Baldwin [17], Nakov and Hearst [27], Ó Séaghdha and Copestake [31], Peñas
and Ovchinnikova [34], and Tratz and Hovy [41], all of which contain exclusively binary
compounds. While the majority of this paper focuses on binary compounds, we extend our
analysis to ternary compounds in Section 8.

The Head-Modifier Principle

In English, Binary compounds typically involve the first element (an attributive noun) mod-
ifying the second element. As such, for a binary compound, the first word is referred to as
the modifier, while the second word is the head [27].1

1This is true of some, but not all languages. For example, in French, the head is typically on the left [30].
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In the case of olive oil, then, olive is the modifier and oil is the head, as the word olive is
describing the type of oil. Similarly, for co�ee cup, co�ee is the modifier and cup the head,
as the word co�ee is describing the type or purpose of the cup.

This principle, which we refer to as the Head-Modifier Principle, is assumed to hold true
throughout this thesis.2 That is, when we refer to the modifier or head of a compound, we
are implicitly referring to its left and right components, respectively.

Note that the Head-Modifier Principle

Branching

For compounds composed of more than two components, such as ternary compounds, the
Head-Modifier Principle can be applied recursively. Typically, such compounds are described
in terms of branching, a phrase which refers to the way in which the words are grouped
together during parsing [20].

For example, we could define the ternary compound olive oil bottle to be “a bottle of olive
oil”. The definition would mark olive oil bottle as a left-branching compound. We could then
bracket this interpretation like so: [[olive oil] bottle]. This bracketing syntax preserves the
mental grouping of the words in the compound, as we have defined olive oil bottle such that
the words olive oil are modifying the word bottle. In this case, olive oil, a sub-compound, is
the modifier, and bottle is the head. Going one level deeper, we could then say that olive is
the modifier and oil the head of the sub-compound olive oil.

As an alternative example, chocolate birthday cake is a right-branching compound when
defined as “a birthday cake made of chocolate”. Thus, it would be represented as [chocolate
[birthday cake]], with chocolate the modifier and birthday cake, a sub-compound, the head.

This representation can be applied recursively to compounds of arbitrary length. For
example, [[chocolate [[birthday party] cake]] obsession] is a length-5 compound with a variety
of left- and right-branching sub-compounds.

These designations (left- and right-branching) will be important when analyzing the
interpretability of ternary compounds in Section 8.

The Principle of Compositionality

There are a number of theories as to how the human brain processes new or unfamiliar noun
compounds, the most popular of which is known as the Principle of Compositionality.

Definition (Principle of Compositionality). The meaning of a whole is a function of the
meanings of the parts and of the way they are syntactically combined [33].

In the context of noun compounds, this principle states that the act of parsing a new
compound involves parsing its head and modifier separately, and then finding some means
by which to combine them. For example, to interpret the compound brick wall, a human

2The English language does contain some compounds that do not follow the Head-Modifier Principle,
like the ‘exocentric’ compound pickpocket. However, these compounds are relatively rare and typically non-
productive [3]. As such, they are ignored throughout this thesis.
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judge might first parse brick and wall independently, and then reason that the wall could be
made of brick, thus developing an interpretation through the combination of two separate
definitions. Note that this process implicitly involves the act of disambiguation, as the
interpreter must decide on the optimal sense in which each word should be used (e.g., in the
compound apple juice, the judge must decide that apple is best interpreted as a fruit, rather
than, say, a computer brand).

The Principle of Compositionality is in opposition to, say, a theory of understanding that
requires the brain to store every compound it has seen and subsequently search for a similar
compound with which it is familiar when parsing new or unfamiliar compounds.

Given the straightforward nature of this Principle, we find it particularly appealing,
especially as it relates to noun compounds; in this thesis, we generally assume it to hold
true.

2.2 Prior Research
As mentioned in Section 1.1, there is little to no existing research investigating the question of
noun compound interpretability. Instead, academics have typically focused on constructing
classification taxonomies for the various semantic relationships between words in a com-
pound, and techniques for automated paraphrase generation.

The Syntax and Semantics of Complex Nominals

As mentioned previously, many academics have focused on constructing classification tax-
onomies for the semantic relationships present in noun compounds. A discussion of the
history of these taxonomies will be useful in tracing the history of noun compounds, as well
as highlighting their distinctive qualities.

The first such taxonomy was introduced in 1978 with the publishing of Levi’s seminal
book, The Syntax and Semantics of Complex Nominals. Levi proposed a flat taxonomy of
nine di�erent semantic relationships: cause, have, make, use, be, in, for, from, about.
According to Levi, these nine classifications cover a broad swath of noun compounds. For
example, the compound honey bee would be classified as make, as in, “the bee makes honey.”
Similarly, the compound tear gas would be classified as cause, as in, “gas that causes tears.”

But as Newmeyer noted shortly after publication, these classifications fail to accurately
capture the ‘meaning’ of a compound. Looking again at the tear gas example: tear gas is
not just a gas that causes tears. As Newmeyer remarks: “if it has a paraphrasable meaning
at all, it is ‘gas so-called because one of its properties is to cause tears’” [29].

Levi’s response is to claim that these classifications are not meant to represent the ‘mean-
ing’ of a compound, but rather, the realm of interpretations that one might use when en-
countering a new, unseen compound. The distinction is subtle but significant. For example,
if one had never encountered the compound tear gas, they would likely interpret it as a ‘gas
that causes tears’. So although cause may not accurately capture the meaning of tear gas,
it could capture a reasonable interpretation.
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This makes Levi’s schema more of a theoretical construct than a practical tool. Indeed,
there are other di�culties when looking at the proposed schema as a ‘tool’. For one, when
we confine ourselves to a set of just nine semantic relationships, a great deal of ambiguity
emerges, as the relationships included in the set become overly broad–and necessarily so,
given the incredible diversity of compounds that they must cover. Using the tear gas ex-
ample again, one could make a reasonable claim for assigning it to the cause, make, or for
categories.

Advanced Taxonomies

In response to these di�culties, academics have continued to iterate on the idea of construct-
ing fixed taxonomies of semantic relations for noun compounds. Over time, these taxonomies
have grown in size, from the 13 semantic relations of Vanderwende [43], to the 20 relations
of Barker and Szpakowicz [2], to the 30 relations of Nastase and Hearst [28], and so forth.

The most ambitious and comprehensive e�ort to enumerate an explicit list of relation
classifiers can be found in Tratz and Hovy [41], which provides 43 compound relations in
an attempt to “start fresh and build a new taxonomy” given the heterogeneity of previous
attempts.

However, Tratz and Hovy readily admit to the existence of “an unbounded number of re-
lations”. Thus, their taxonomy merely aims to cover the “vast majority” of noun compounds,
as the authors admit to the potential impossibility of comprehensive coverage.

With many of these taxonomies, the di�culty is in striking a balance: too few categories,
and the classifications are overly broad and ambiguous, leading to schema that are not useful
in practice; too many categories, and human judges fail to agree on the correct classifications.
In the case of Tratz and Hovy [41], for example, their results, while respectable, did not
represent a substantial statistical improvement over existing taxonomies in terms of co-
agreement, the level of consensus among judges as to which designation best captures the
relationship exhibited by the compound.

An Unbounded Set of Relations

Recently, noun compound research has taken an interesting turn, in part due to the work
of Nakov and Hearst [27]. Instead of focusing on the construction of fixed taxonomies,
academics have instead developed techniques for classifying semantic relationships in noun
compounds through the use of verbs. Specifically, rather than describing a head-modifier
pair as from or be, the goal is to describe in terms of a paraphrasing verb that accurately
captures the relationship.

As an example: while Levi’s schema might label cancer doctor as for (i.e., “a doctor
for cancer”), using verbs gives us the flexibility to label it as specialize or treat. This
approach leads to more accurate classifications and, as an added bonus, more faithful para-
phrases, e.g., “a cancer doctor is a doctor that specializes in cancer”. In e�ect, the use
of paraphrasing verbs has two advantages: firstly, it allows for the use of an unbounded set
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of relations (assuming that there are an infinite number of verbs); and secondly, it allows for
the creation of paraphrases that are immediately useful.

In Nakov and Hearst [27], the authors develop a search-engine based technique for pro-
ducing verbs that describe the semantic relation underpinning a noun compound. Their
algorithms beat the baseline on a number of NLP tasks, suggesting that verbs are “the sin-
gle most important feature for predicting semantic relations”, among those considered in the
article.

This development is further evidence of the supreme productivity and diversity of com-
pounds, qualities that evidently cannot be captured by a fixed taxonomy. As far as this
development is relevant to the present study: as in Nakov and Hearst [27], we use verbs
and prepositions, through use of the relative clause, to paraphrase noun compounds, which
stems from a belief that these expressive techniques are necessary for capturing the realm of
possible interpretations.

Lexical & Semantic Similarity

Finally, we briefly review the use of lexical and semantic similarity techniques in classifying
and paraphrasing noun compounds.

Along with creating classification taxonomies, researchers have also focused on techniques
for automated classification of compounds based on di�erent sets of semantic relations. In
Kim and Baldwin [17], for example, the authors develop techniques for automatic noun com-
pound classification based on WordNet similarity metrics. In particular, Kim and Baldwin
focus on classifying compounds based on the semantic relations between their constituent
components. Their results suggest that these metrics, which are based on semantic similar-
ity, are helpful in categorizing noun compounds. While the questions they address are very
di�erent from those in this thesis, their techniques are similar.

Ó Séaghdha and Copestake [32] make use of lexical and relational similarity features,
focusing on co-occurrence and other corpus-based techniques. As above, their results demon-
strate that these feature choices are useful in capturing the semantic meaning of noun com-
pounds. Thus, we make use of lexical features in our analysis as well.

The usefulness of these features in prior work suggests that speakers likely produce and
interpret new compounds based on a process of analogy and comparison, given the intimate
links between these processes and the concept of semantic similarity.

2.3 WordNet
As much of the analysis and terminology that follows relies on a basic understanding of
WordNet, we include a brief description of its fundamental properties and principles for
completeness, based on Fellbaum [10].

WordNet is a lexical database of the English language that covers nouns, verbs, adjectives,
and adverbs.3 WordNet’s core atomic unit is the synset, which can be thought of as an

3For the purposes of this paper, the noun graph is the only graph of importance.
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unordered set of synonyms representing a single, distinct concept, and usually includes a
brief gloss, or definition, along with some examples.

In WordNet, English-language words can map to multiple synsets if they’re used in
multiple di�erent senses. For example, the synset paper.n.1 represents paper the substance,
while the synset paper.n.5 represents the idea of an academic paper.

Synsets are connected in a graph based on the concept of hyperonymy. Specifically, in
WordNet, a connection from one synset to another going down in the graph represents a
more general synset becoming increasingly specific. In particular, the hypernym of a given
synset is the parent synset, which, in theory, represents a more general concept of which the
initial synset is an instance. Similarly, the hyponyms of a given synset are its children, which
should be even more specific. In this way, going deeper in the graph leads to more specific
synsets, while going higher (i.e., towards the root) leads to those that are more abstract.

For example, the synset apple.n.1 has the gloss “fruit with red or yellow or green skin
and sweet to tart crisp whitish flesh”. Its hypernym, edible fruit.n.1, has the gloss “edible
reproductive body of a seed plant especially one having sweet flesh”, representing the more
abstract idea of fruit that can be eaten, of which an apple is an instance. Meanwhile,
apple.n.1 ’s hyponyms include cooking apple.n.1, which has the gloss “an apple used primarily
in cooking for pies and applesauce etc.”, representing a specific type or usage of an apple.

2.4 Terminology
In this section, we begin to introduce some of the methodology underlying this thesis, along
with the terminology that will be necessary to parse the remainder of the report.

Compound Types

For the remainder of the paper, we rely on the following terminology: attested compounds
are noun compounds that are found in either the Kim and Baldwin [17], Nakov and Hearst
[27], Ó Séaghdha and Copestake [31], or Tratz and Hovy [41]. As each of these datasets
sourced its compounds from substantial corpora of English text, attested compounds are
assumed to be easily interpretable (and often familiar) to human judges. To provide a sense
of scale, these datasets combined to produce 20,710 distinct binary compounds.

At the opposite end of the spectrum, generated compounds are those which were con-
structed algorithmically, as described in Section 4.1. Generated compounds are unattested
in that they are purposefully not present in the aforementioned datasets; this leaves open
the possibility of a generated compound being di�cult or impossible to interpret. In brief,
generated compounds are created by combining two unrelated words, regardless of whether
or not they pair well together. As such, generated compounds are likely to be new to human
judges given the sheer immensity of the domain and the random nature of their construc-
tion; they are intentionally high entropy. The relationship between attested and generated
compounds is depicted in Figure 1; this process is described in more detail in Section 4.1
below.
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Attested

...
olive oil

co�ee cup
fruit fly

Generated

...
olive cup
co�ee fly
fruit oil

Peer

...
olive mug

tea fly
banana oil

Figure 1: Attested compounds, on the left, are familiar and easy to interpret. Generated
compounds, in the middle, are often new to human judges. Peer compounds, on the right,
are created by mutating a constituent component of a generated compound using WordNet
synsets.

An instance of a generated compound is said to be annotated if multiple human judges
have indicated whether or not they were able to interpret the compound and, if possible,
provided paraphrases based on their interpretations. Later, in Section 6.1, we describe a
process by which these paraphrases were used to determine the WordNet synsets that best
represent the sense in which a noun compound’s head and modifier were employed. The
determination of these synsets is another part of this annotation process.

Finally, peer compounds are those created by taking an annotated, generated compound
and modifying either its modifier or head via a systematic walk through WordNet. Recall
that annotated compounds, by definition, include the WordNet synsets that best capture
their interpretation. To construct a peer, then, we use these synsets to replace a compound’s
head or modifier with a new word extracted from a nearby WordNet synset. Peers thus
exist relative to the generated compound from which they were constructed. As a concrete
example, if the word party in the annotated compound party cake were found to be best
represented by the modifier synset party.n.2, then by taking the hyponym of this synset
(wedding.n.3 ), we could produce the peer wedding cake. In this case, wedding cake would be
the peer compound, while party cake would be its root.

In this thesis, we consider four such peer relationships, as defined in Table 1 and illus-
trated in Figure 2:

Name Relationship to Root
Child Hyponym

Sibling Co-hypernym
Uncle Hypernym of co-hypernym
Nephew Hyponym of co-hypernym

Table 1: Precise WordNet relations and their aliases.

Interpretability Classifications

We define three categories of interpretability for a given noun compound:
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Grandparent

Parent

Sibling

Nephew

Root

Child

Uncle

Figure 2: WordNet relationships from a given root synset Root.

• A compound is said to be interpretable with No di�culty if a human judge can easily
decide on a meaning for the compound. Compounds like olive oil and co�ee cup are
interpretable with No di�culty.

• A compound is said to be interpretable with Minor di�culty if a human judge can come
up with a reasonable but awkward meaning. Compounds like deficiency committee and
horse structure are interpretable with Minor di�culty, according to human judges.

• A compound is said to be Meaningless if a human judge cannot come up with a
reasonable meaning for the compound or if it makes no sense to said judge. Compounds
like rice eye and daisy baby are Meaningless, according to human judges. Note that
it is occasionally possible to come up with a paraphrase for a Meaningless compound,
but that paraphrase should be considered nonsensical by the judge.

These labels are utilized in the experiments described in Section 4 as well as the analysis
that follows.

3 Hypotheses
With the key terms established, we now define the hypotheses underlying our investigation
of interpretability. These are provided as a series of claims, each of which will be examined
in detail throughout this thesis:

H1. Given the creativity and productivity of noun compounds as a linguistic structure, only
a small minority of compounds should be uninterpretable. In particular, the majority
of compounds should be classified as interpretable with No di�culty or Minor di�culty.

H2. Compounds that are easier to interpret (i.e., interpretable with No di�culty rather
than Minor di�culty) should tend towards fewer interpretations (as in, less variety).
In particular, compounds that are easy to interpret should be less ambiguous (than
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those interpretable with Minor di�culty) and human judges should therefore exhibit
less variety and higher inter-rater agreement in their interpretations.

H3. Given the usefulness of WordNet-based (and other) semantic similarity metrics, as seen
in the work of Kim and Baldwin [17], WordNet-based analysis should be e�ective for
understanding and even classifying compounds by ease of interpretability. In partic-
ular, WordNet-based comparisons between attested and generated compounds should
provide insights into compound interpretability. This assumes that human judges cre-
ate and understand new compounds through a process of analogy based on knowledge
of existing, frequently occurring compounds. Validation of this hypothesis would fur-
ther evidence the assumption.

H4. The contribution of the head and modifier in comparing compounds to their attested
variants should be roughly equal, in agreement with Kim and Baldwin [17]. In particu-
lar, distinct machine learning systems designed around usage of the head and modifier
for comparisons between generated and attested synsets should exhibit similar accu-
racy.

H5. Human-provided paraphrases for compounds interpretable with Minor di�culty should
require more and a greater diversity of tokens (i.e., words) due to the (evidently)
unusual nature of the compound, which, in-turn, requires that a greater volume of
information be expressed through the paraphrase. In particular, paraphrases for Mi-
nor di�culty compounds should use fewer prepositions and more verbs, as verbs are
considered more expressive [27], and contain more and a greater diversity of tokens.

H6. Peer compounds should exhibit patterns in interpretability vis-à-vis their roots depend-
ing on the relationship between them. In particular, peers created by the Sibling rela-
tion should be more likely to have the same interpretability label as its root and, more
generally, the more similar a peer to its root, the closer it should be in interpretability.

Many of these hypotheses will be expanded upon throughout the paper, and each will
be assessed for validity. By presenting them at this early juncture, we hope to make our
intentions and beliefs clear before presenting or analyzing the relevant data.

4 Experimental Design
At the core of this thesis is a series of experiments run on the Amazon Mechanical Turk
(AMT) platform, a website which allows experimenters (also known as requesters) to design
and create small experiments, known as Human Intelligence Tasks (HITs), to be completed
by human workers (also known as Turkers) [6].

In total, we ran three rounds of experiments. In this section, we focus on the first round,
the goal of which was to provide su�cient data so as to make observations validating or
invalidating the hypotheses outlined in Section 3. The second round of experiments, which
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focused on peer compounds, is described in Section 7, with the third round, which focused
on ternary compounds, described in Section 8.

At a high level, this first round of experiments asked human judges to interpret generated
compounds using the template described in Section 4.2. These judgments were then used to
address the hypotheses from Section 3.

4.1 Data Generation
In this first round of experiments, 250 noun compounds were generated through the following
process:

1. A set of base compounds was computed by taking the union of the Kim and Baldwin
[17], Nakov and Hearst [27], Ó Séaghdha and Copestake [31], and Tratz and Hovy
[41] datasets. Note that this set of compounds is equivalent to that of the attested
compounds defined in Section 2.4.

2. Each compound was divided into a modifier and a head, which led to two sets, the first
consisting of all possible modifiers and the second, all possible heads.

3. A randomly chosen modifier and a randomly chosen head were then concatenated. The
resulting compound was discarded if: (1) it was attested (i.e., it was present in any of
the existing datasets), or (2) it had already been generated. This step was repeated
until 250 distinct compounds had been produced.

The resulting compounds, which consisted of a randomly paired head and modifier, rep-
resent the generated compounds defined in Section 2.4; this process is depicted in Figure 1
on Page 13.

In total, this process had the potential to produce 13,967,550 unique compounds, dis-
counting those that were themselves present in the attested dataset. Given the sheer immen-
sity of this pool, this process is assumed to be ‘random enough’; in other words, the generated
compounds should represent a substantial cross-section of the possible heads, modifiers, and
semantic relationships of noun compounds as a linguistic structure.

The exact number of compounds (250) was chosen so as to match the size of the dataset
used by Nakov and Hearst [27], and to fit within the time and financial constraints of this
thesis.

Search-Engine Verification

As an additional step, the generated compounds were filtered using search-engine-based tech-
niques to avoid pairings that may have been invalid for a number of reasons. These com-
pounds may have involved irregular usage of acronyms or exceptional grammatical structure
that could confuse human judges or otherwise compromise the analysis.

In particular, for each generated compound, a query was run on the Bing search engine
to find instances in which the modifier and head appeared adjacently. The top 100 search
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results were collected and shallow parsing was performed on their relevant snippets using
NLTK’s regular-expression-based parser [4]. Each compound was assigned a score that tallied
the number of snippets (out of the top 100) for which the modifier and head appeared as
unseparated nouns. For example, given the compound baseball game, the snippet “go to
a baseball game...” was considered valid, while the snippet “I like baseball. Game...” was
invalid.

Compounds with fewer than five valid snippets (out of the top 100 results) were discarded.
As the bar for qualification was incredibly low, this filtration step was considered weak
enough such that the average human judge would not have seen most compounds satisfying
the criteria. In other words, while this filtration helped remove irregular noun compounds,
it was not strict enough to bias the pool of candidate compounds towards those with which
human judges would be familiar. This would be a valid concern had we required, say, 95
or more valid snippets (out of the top 100 results), as any noun compound that passed the
test would by definition occur quite frequently. However, this low bar was chosen so as to
preserve the randomness and unfamiliarity of the generated compounds.

The final list of 250 compounds generated by this process can be found in Section B.1 of
the Appendix.

4.2 Human Intelligence Task Format
The Human Intelligence Task (HIT) template used in this first round of experiments was
designed so as to collect two key pieces of information. Specifically, for each judgment, we
required:

1. An interpretability label. This label had to be chosen based on the scale introduced
in Section 2.4, allowing Turkers to choose from the No di�culty, Minor di�culty, and
Meaningless designations. Note that Turkers were provided definitions nearly identical
to those listed in Section 2.4.

2. A paraphrase representing and explaining the Turker’s interpretation of the noun com-
pound. A paraphrase was required if and only if the Turker deemed the compound to
be interpretable with No di�culty or Minor di�culty, as Meaningless compounds by
definition should not be paraphrasable.

There were several reasons for collecting paraphrases:

• To prevent against low-quality work and keep Turkers honest: By requiring a para-
phrase, Turkers could not merely guess an interpretability label and pass it o� as an
honest attempt.

• To force the Turkers to think deeply about the interpretability of the compound: By
going through the exercise of generating a valid paraphrase, Turkers were forced to
consider whether the compound was legitimately interpretable, and to what degree.

17



• To allow for synset annotation in the future: With a paraphrase, the essence of the
Turker’s interpretation is captured, allowing for the compound’s head and modifier to
be assigned appropriate WordNet synsets, as described in Section 6.1.

• To allow for paraphrase analysis in the future, in consistency with the hypotheses
outlined in Section 3.

When providing a paraphrase, Turkers were asked to use a fill-in-the-blank format. In
particular, Turkers were given a template for paraphrasing the compound based on use of
the relative clause or a preposition. For example, given the compound pressure dispute,
Turkers were asked to fill in the following blank: “a pressure dispute is a dispute that [...]
pressure(s)”.4

This format is useful in that the resulting paraphrases are easy to analyze programmati-
cally and easy for Turkers to produce. At the same time, it is su�ciently flexible as Turkers
have access to an arsenal of verbs and prepositions. As seen in the work of Nakov and Hearst
[27], use of this format with paraphrasing verbs is impressively powerful when it comes to
noun compound analysis; similarly, Lauer [20] demonstrated that prepositions can be useful
as well.

For an example of an HIT presented to Turkers, see Section B.2 in the Appendix.

4.3 Structure
For each of the 250 generated compounds constructed by the process defined in Section 4.1,
three judgments were collected by Turkers, where each judgment conformed to the HIT
format from Section 4.2. This made for 750 approved HITs in total.

In this section, we describe the manner in which these HITs were divided up among
Turkers, and how their submissions were monitored and approved. On the AMT platform,
quality control is essential [15]; as such, we designed our experiment so as to maximize the
quality of submissions and avoid biasing our results towards the tendencies of any specific
Turkers.

Batching

HITs were released in batches of 50 such that each of the 250 compounds appeared exactly
once in the first five batches, exactly once in the second five batches, and exactly once in
the final five batches.5 In this way, each set of five batches constituted an individual run of
the experiment, and the three sets of five batches constituted three such runs. The batching
process is depicted in Figure 3.

4In the instructions, it is explained that ‘that’ can be replaced by a preposition, like ‘who’, ‘where’, ‘of’,
and so forth.

5Due to an error, the first five batches were released as a single batch of 250 compounds. This should have
little bearing on the experimental results, as the next two judgments were gathered in the correct manner.
As such, each judgment collected was randomized relative to one another.
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Figure 3: An example of the batching process, in which a set of four compounds is divided
up into two sets of two batches. Note that each set of batches contains each of the four
compounds exactly once. Batches 1 and 2 (blue) would be released first, in order, followed
by Batches 3 and 4 (red). At completion, each compound would be judged exactly twice,
and in a randomized order.
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For each of these rounds of five batches (i.e., each set of 250 HITs), the order and grouping
of compounds was randomized. In this way, no two judgments for a single compound occurred
in the same ‘surroundings’, i.e., in the presence of the same group of compounds. This
prevented against certain compounds being biased by their position in the set of HITs. In
other words, it made for a random order of presentation, a crucial form of experimental
control.

As an example of why this kind of batching can be helpful, consider a scheme that does not
randomize presentation, and assume that we have one compound, A, that is very di�cult to
interpret and another compound, B, that is also relatively di�cult to interpret, but slightly
easier than the first. If we collected three judgments for these two compounds, each time
presenting Turkers with A and then B, the Turkers could be biased by the di�culty of A and
rate B as easier to interpret than it truly is. Thus, the concern is that a consistent order of
presentation could a�ect the interpretability label assigned to a given compound. Through
the batching process, we avoid these issues entirely.

Turker Restrictions

When conducting experiments on the AMT platform, one runs the risk of biasing results in
favor of certain Turkers that submit a large portion of the available HITs, an issue that can
be compounded by a lack of quality control. For example, in the context of this experiment,
one runs the risk of having a single, very creative Turker submit a large proportion of
the total judgments in which every compound is deemed interpretable, which may not be
representative of the standard human judgment.

To prevent against such issues, we levied the following restrictions upon Turkers partici-
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pating in our experiment:

• No Turker was allowed to submit multiple judgments for the same compound, thus
guaranteeing that the interpretability of each compound was assessed by three distinct
judges.

• No Turker was allowed to submit more than 50 judgments in total.

• Turkers could only participate if they had an approval rating above 99% and more than
500 HITs approved over their lifetime. (Note that experimenters can reject submissions
from Turkers if they fail to follow instructions or otherwise represent low-quality work.)

These restrictions guaranteed a variety of judgments for a single compound and protected
against any biases or tendencies present in the Turkers themselves.

Criteria for Rejection

The AMT platform provides the ability for experimenters to reject HITs submitted by Turk-
ers if they fail to adhere to instructions or otherwise represent low-quality work. In this
experiment, HITs were rejected if they:

• Provided a paraphrase after indicating that the compound was Meaningless.

• Interpreted either the head or modifier as a proper noun, adjective, or any other inap-
propriate part-of-speech.

• Misunderstood a word in the compound (e.g., interpreted ‘statue’ as ‘statute’).

• Misspelled a word in their paraphrase (an indicator of laziness).

• Provided a nonsensical paraphrase.

These criteria again demonstrate the value of collecting paraphrases, as low-quality work
was easy to identify.

In some cases, Turkers who submitted suspicious results (e.g., an usual number of Mean-
ingless judgments) had their judgments disqualified. The bar for judgment quality was kept
very high, as each of the 750 individual judgments was reviewed and approved manually.

5 Overview of Results
In this section, we present the results of this first round of experiments from a high level.
Namely, we focus on meta-data, such as the average length of time that a Turker spent on
an HIT, and raw expository statistics computed over the submissions. In Section 6 below,
we discuss the various ways in which the data was analyzed beyond these basic measures,
such as through the use of advanced machine learning techniques, clustering algorithms, and
dependency parsing.
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5.1 Experiment Statistics
This first round of experiments was conducted in the window from October 19, 2014 to
October 21, 2014.6

As we chose to use 250 distinct compounds and required three judgments per compound,
we had to collect 750 individual HITs that satisfied the criteria defined in Section 4.3. In
doing so, we rejected exactly 50 submissions, making for a 93.75% acceptance rate.

The average time spent by Turkers on an HIT was roughly 49.50 seconds. This number
was well above our expected time per judgment (30 seconds). Note that Turkers are paid
merely based on the number of HITs approved and not by the time spent on each task, which
makes the 49.50 seconds a comforting result, as lengthier judgments would intuitively reflect
more thoughtful consideration by Turkers.

Turker ‘Diversity’

The 750 accepted HITs were submitted by a total of 83 di�erent Turkers. The average
number of accepted submissions per Turker was 9.04, while the median was 3, indicative of
a long tail of Turkers that submitted just a few HITs (75% of Turkers submitted between 1
and 10 HITs). While it would have been advantageous to achieve a more even distribution,
only 8 Turker submitted more than 30 HITs, and no Turker made it to the 50-HIT cuto�.
In conclusion, the pool of judges was su�ciently diverse so as to avoid significant bias in the
results, as per experimental design.

5.2 Breakdown of Submissions
Next, we introduce some basic, expository statistics about the results. In Section 6 below,
we analyze the data in greater detail.

Of the 750 approved HITs, which spanned 250 distinct compounds, 299 submissions
(39.9%) identified a compound as interpretable with No di�culty, 245 submissions (32.7%)
identified a compound as interpretable with Minor di�culty, and 205 submissions (27.3%)
identified a compound as Meaningless.

Given that we collected three judgments per compound, a logical next step was to view
these three judgments as a vote on the compound’s true interpretability label, and take
the interpretability label receiving a majority of the votes to be the ‘ground truth’. For
example, if two judges deemed a compound to be interpretable with Minor di�culty and a
third judge deemed it Meaningless, we would label the compound to be interpretable with
Minor di�culty, given that two out of three judges agreed on that label. Note that if each of
the three judges selected a di�erent interpretability label for a given compound, this would
result in a three-way tie and no clear majority; thus, the compound would be ineligible for
this type of analysis. This occurred only in a minority of cases.

6In reality, 782 of the total 800 submitted HITs were completed in the aforementioned window. Due
to revised rejection criteria, batches of size 5, 6, and 7 had to be re-run on October 23, November 5, and
December 2, 2014, respectively.
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By taking such a majority vote, we found that 96 of the 250 compounds (38.4%) were
voted to be interpretable with No di�culty, 68 of the 250 (27.2%) were interpretable with
Minor di�culty, and 55 of the 250 (22.0%) were Meaningless, leaving 31 compounds with
no majority label.

Alternatively, by instead requiring unanimity among judges, we found that 43 of the 250
compounds (17.2%) were identified as interpretable with No di�culty, 18 of the 250 (7.20%)
as interpretable with Minor di�culty, and 28 of the 250 (11.2%) as Meaningless.

These results are presented in Table 2.

Di�culty Num. Judgments Num. Majority Num. Unanimous
No di�culty 299 (39.9%) 96 (38.4%) 43 (17.2%)
Minor di�culty 245 (32.7%) 68 (27.2%) 18 (7.20%)
Meaningless 205 (27.3%) 55 (22.0%) 28 (11.2%)

Table 2: Initial results from the Amazon Mechanical Turk experiments, which consisted of
750 approved HITs and 250 distinct noun compounds.

Interpretability as the Norm

Under the majority-vote criteria, nearly two-thirds of compounds (65.6%) were deemed in-
terpretable with either No di�culty or Minor di�culty. If we restrict ourselves to those 219
compounds for which we had a clear majority-voted label, then 74.9% of compounds were
deemed interpretable. This seems to validate hypothesis H1 from Section 3, which claimed
that the majority of compounds would be interpretable.

This high proportion is a testament to the productivity of noun compounds. As described
in Section 4.1, the 250 compounds presented to Turkers were constructed randomly; most of
these compounds were completely new to human judges. In general, one would expect such
high entropy data to be riddled with noise. However, we instead found that these compounds
were, more often than not, interpretable. The fact that human judges could ascribe meaning
to almost three-quarters of these random compounds is a rather remarkable result.

Co-Agreement

In addition, we note that the co-agreement among judges was satisfyingly high for this exper-
iment: 221 of the 250 compounds (88.4%) achieved majority agreement on an interpretability
label, and 89 of the 250 compounds (35.6%) achieved consensus on an interpretability label.

Given the subjectivity inherent in the task, these values are seen as acceptable and
representative of suitable experiment design. However, given that there has been very little
academic research on the question of noun compound interpretability, we acknowledge that
benchmarks are few and far between, making it di�cult to contextualize the co-agreement
figures presented above.
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Majority vs. Unanimity

When determining a compound’s interpretability label by majority vote, a larger proportion
of compounds were identified as interpretable with Minor di�culty than as Meaningless.
However, this result is reversed when requiring unanimity among judges.

When requiring the three judges to agree completely on a label, only 18 compounds
were deemed interpretable with Minor di�culty, as opposed to the 43 compounds that
were deemed interpretable with No di�culty (an increase by a factor of 2.39) and the 28
compounds that were deemed Meaningless (an increase by a factor of 1.56).

An alternative way of looking at this result: only 26% of majority-voted Minor di�culty
compounds were agreed upon unanimously as being interpretable with Minor di�culty. Of
that initial set of compounds, three out of every four had a dissenting judgment.

This is indicative of the notion that some compounds are obviously interpretable; others,
obviously uninterpretable. But in between, there’s a grey area where judges tend to disagree.
Compounds deemed to be interpretable with Minor di�culty linger in this grey area, often
characterized by the dissenting judgment mentioned above.

5.3 The E�ect of Positioning on Interpretability
Recall that our AMT experiment was designed so as to minimize the impact that the order-
ing of HITs would have on the interpretability labels selected by Turkers. In that light, it
is interesting to look at how submissions varied based on the positioning of an HIT within
a batch. A related question, and one that we will look at in this section as well, is how
submissions varied based on the number of HITs that a Turker had completed. For exam-
ple, did Turkers become more open-minded as they saw more compounds, which could be
indicated by a stronger preference for No di�culty and Minor di�culty judgments? Or was
there some other pattern to the submissions?

When analyzing the results submitted by Turkers as a function of ‘time’, there are two
possible lens that one can adopt. The first views time in terms of the position of an HIT
within a batch; the second, in terms of the number of HITs that the specific human judge had
completed before a given HIT. For example, given a batch with HITs A, B, and C, completed
by judges J1, J2, and J1 again, we could view C as the third HIT in a batch, or as the
second HIT completed by its judge. These two lens (or perspectives) can also be phrased,
respectively, as: plotting interpretability labels as a function of an HIT’s position within a
batch, and plotting labels as a function of Turker experience.

Given that HITs are presented to workers in a first-in-first-out order, one would expect
these two approaches to capture similar ideas, as an HIT positioned later in a batch would
more likely be completed by a Turker who had completed some of the earlier HITs. But
the di�culty with the latter approach is that there was a large discrepancy in terms of the
number of HITs submitted by Turkers, with many Turkers submitting just a handful of HITs,
and a smaller subset submitting between 30 and 50 HITs. For completeness, we analyze the
results from both lenses.
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Across a Batch

When viewing time in terms of the proportion of a batch completed, there were no major
discrepancies in labelling. In other words, the position of a compound in a batch did not
seem to have a significant e�ect on the labelling of that compound.

Label First Third Second Third Final Third
No di�culty 0.348 0.301 0.351

Minor di�culty 0.350 0.394 0.256
Meaningless 0.317 0.322 0.361

Table 3: The proportion of judgments for a given interpretability label that came in the first,
second, and final third of HITs in a batch. For example, the top right cell indicates that
35.1% of No di�culty judgments came from HITs positioned in the final third of a batch.

Table 3 contains the proportion of judgments, for a given interpretability label, that
occurred in a certain range of positions within a batch; in this case, batches are broken down
into thirds. For example, 35.0% of Minor di�culty judgments came from HITs positioned in
the first third of a batch (i.e., within the first 16 HITs, given that batches were of length 50).
Given a perfectly uniform distribution, every cell in the table would read 0.33, indicative of
a 33% split for each third of a batch.

The values in Table 3 roughly line up with expectation, which implies that position within
a batch did not play a significant role in influencing interpretability labels. However, there
are some minor deviations. For example, Meaningless judgments became more common near
the tail end of a batch, and Minor di�culty judgments dropped from 39.4% in the second
third to just 25.6% in the final third, suggesting that Turkers became less inclined to level
Minor di�culty and more inclined to level Meaningless judgments as time went on. However,
this does not seem to be a significant e�ect.

When considering these types of conclusions, it becomes clear that position within a batch
is just a proxy for evaluating the e�ect that a Turker’s experience played on the judgments
they submitted. We analyze this e�ect in the next section.

Over a Turker’s Lifetime

Next, we look at how the number of HITs completed by a given Turker influenced the
interpretability labels of the judgments they submitted. Recall that in Section 5.1, we
stated that 83 distinct Turkers had participated in our experiment, where ‘participated’
implies that they had at least one HIT submission accepted. Of those 83, 27 made exactly
one acceptable judgment, while 56 made more than one acceptable judgment. In addition,
note that Turkers submitted a total of 299 No di�culty judgments, 246 Minor di�culty
judgments, and 205 Meaningless judgments, as presented in Table 2 of Section 5.

With that established, we present, in Figure 4, a plot of the number of judgments submit-
ted for each interpretability label as a function of the experience of the Turker submitting the
judgment; in particular, as a function of the number of HITs submitted by the Turker before

24



submitting the given HIT. To put it in simpler terms, each line in Figure 4 represents the
rate at which judges with a certain level of experience (measured along the x-axis) deemed
compounds to be interpretable with the labeling matched to that line.
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Figure 4: The number of judgments for a given interpretability label, as a function of the
number of previous judgments submitted by the active Turker.

The figures presented in Figure 4 are not normalized, yet there are still more Minor
di�culty judgments submitted as a Turker’s first judgment than No di�culty judgments.
To be precise, 32 Turkers submitted a Minor di�culty judgment as their first, while only
28 submitted a No di�culty judgment as their first, which respectively account for 13% and
9% of the total judgments submitted with those labels. The No di�culty judgments soon
overtake the Minor di�culty judgments, but the initial discrepancy is curious.

We can couple this observation with the fact that the Meaningless judgment rates became
increasingly competitive as Turkers submitted more and more HITs: after 10 or 15 HITs,
the number of judgments for each interpretability label becomes roughly even, with the
Meaningless label even containing more gross judgments for Turkers who had completed 18,
23, and 29 HITs at that point.

Figure 4, then, seems to depict a trend in which Turkers would initially shy towards Minor
di�culty judgments and, over time, tend towards a higher rate of Meaningless judgments.
This is likely connected to the idea of a Minor di�culty grey area, as described in Section 5:
as it is likely that Turkers had not seen any of the generated noun compounds prior to
their first judgment, they had no way to peg the di�culty of their first compound with
respect to the other compounds in the dataset and thus opted for the ‘safest’ label, Minor
di�culty, which sits between easy and hard. This again relates to the idea of Minor di�culty
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compounds existing in a grey area between the obviously interpretable and the obviously
uninterpretable.

While these trends are interesting, we feel that the randomization and other steps taken to
ensure experimental hygiene (such as batching and rate-limiting for Turkers) were su�cient
to yield high quality results. The discrepancies outlined in this section are relatively minor
and, given that each judgment for a given noun compound was completed by a Turker
with a di�erent level of experience and placed in a di�erent position within a batch, the
interpretability labels determined by majority voting should still be valid for use as ‘ground
truths’.

6 Analysis
In the previous section, we presented some expository statistics from this first round of AMT
experiments. Next, we apply a number of advanced techniques to analyze this data from
various angles in an attempt to validate or invalidate the hypotheses from Section 3.

6.1 WordNet Sense Annotation
As mentioned in Section 4.2, one of the key motivations for collecting paraphrases from
Turkers was to understand how they were interpreting noun compounds, a question that
goes beyond the simpler task of identifying whether interpretation is possible.

This allowed us to compare the variety of interpretations attributable to a given com-
pound and, in addition, compare those interpretations to attested noun compounds with
similar structures. For example, while one Turker might paraphrase the compound co�ee
cup as “a cup that holds co�ee”, another might paraphrase it as “a trophy awarded for
brewing the best co�ee”. These two paraphrases would represent completely di�erent senses
of the word cup: in the former, a cup is a container for holding liquid; in the latter, a trophy.

In Table 4, we present a sampling of the noun compounds used in our experiments. For
each compound, we also include one of the paraphrases submitted by human judges, as well
as the WordNet senses that best match the judge’s interpretation, as determined by the
paraphrase provided.

Compound Paraphrase Modifier Synset Head Synset
machine actor “An actor who works like a machine” machine.n.2 actor.n.1

frog ring “A ring that is decorated with frogs” frog.n.1 machine.n.8
margin o�ce “An o�ce that functions... at the margin” margin.n.1 o�ce.n.1

retirement practice “A practice of a retirement ceremony” exercise.n.3 retirement.n.2
string victim “A victim that has been harmed by string” string.n.1 victim.n.1

Table 4: Several generated noun compounds, along with a sample paraphrase and synset
annotations.
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As a more pertinent example, consider the generated compound government eye. In one
of the judgments submitted by Turkers, we might find that the head, eye, was used in a
manner similar to its function in the attested compound private eye (that is, to denote some
sort of spy). In another, we might find that eye was interpreted as a physical human eye.
Bent these two judgments, eye would have been used in very di�erent senses and, as such,
would need to be annotated with distinct WordNet synsets.

In order to make these comparisons, we chose to use WordNet senses as our unit of
account. Specifically, for each generated noun compound, for each human judgment provided
by Turkers, we used the paraphrase to assign a WordNet synset to the compound’s head and
modifier that best captured their respective usages.

WordNet Senses

In Section 2.3, we introduced the notion of a WordNet synset. WordNet synsets do not
correspond to English-language words in a one-to-one manner: some English words might
have multiple WordNet synsets, one for each sense in which the word might be used. As
an example, the word chair maps directly to two synsets: chair.n.1, defined as “a seat for
one person, with a support for the back”, and chair.n.5, defined as “a particular seat in an
orchestra”.

Additionally, one can expand the set of candidate synsets to include those mapping to
synonyms of a given word. These additional synsets would not be explicitly labeled with
the given word, but would instead represent senses for which the word, when used in a
certain way, would have the same semantic meaning. Returning to our chair example,
if we query for all senses of the word chair including synonyms, then in addition to the
synsets mentioned above, we get professorship.n.1, defined as “the position of professor” (as
in, “Professor Appel is the chair of the Computer Science Department at Princeton.”) and
electric chair.n.1, defined as “an instrument of execution by electrocution”.

A Need for Manual Annotation

In academic research, it is common to default to WordNet’s ‘first sense’ when determining an
acceptable synset to represent a given word, especially in an automated manner. WordNet
senses are ordered roughly by frequency of usage; thus, this heuristic can at times yield
reasonable results [24].

However, the government eye example from the previous section demonstrates a need for
manual sense annotation when working with noun compounds, where a subtle di�erence in
usage can lead to a major di�erence in semantic meaning. For compounds, defaulting to the
first sense provided by WordNet would lead to incredibly inaccurate synset annotation.

As such, we manually determined the optimal synset for the head and modifier of each
compound, for each judgment collected on the AMT platform. As there were 750 total
HITs, and each judgment required two synsets (one for the compound’s head, another for its
modifier), this required up to 1,500 assignments, making it a time-consuming but necessary
task.
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Sense Assignment

For the head and modifier, respectively, the list of candidate synsets was restricted to the
set of noun synsets based on di�erent senses of the head or modifier as well as its synonyms,
determined through use of the Python NLTK library’s WordNet interface [4].

The use of synonyms was deemed necessary in this case, given that the use of a word in
a noun compound can vary greatly based on its position within the compound and the other
words with which its paired. For example, if a Turker was presented with the generated
compound apple chair, by allowing for the use of synonyms, we would be free to label the
head (chair) with the synset professorship.n.1 if they provided the paraphrase “An apple
chair is the chair of a department that studies apples” or the synset chair.n.1 if they provided
the paraphrase “An apple chair is a chair that is made of applies”.

Note that if a Turker judged a compound to be Meaningless, they were not required to
submit a paraphrase; thus, Meaningless judgments could not be assigned WordNet senses,
as there was no paraphrase from which to determine the optimal sense.

First-Sense Heuristic

In some cases, we did fall back to the ‘first-sense’ heuristic mentioned above. Namely:

• If a given word only had one WordNet sense available, including synonyms, we defaulted
to that sense regardless of its appropriateness.

• If we ever needed to assign WordNet senses to a compound that was judged Meaningless
and thus lacked a paraphrase, we defaulted to the first sense for its head and modifier.

• If we ever needed to assign WordNet senses to an attested compound, e.g., when
comparing senses of generated compounds to senses of attested compounds.

This was a necessary procedure but was deemed acceptable for two reasons. First, in the
scenarios listed above, perfect accuracy is more a luxury than a requirement. Second, in our
annotation, we found that the first sense was used in a majority of judgments. To be precise:
for heads in which there were multiple senses to pick from, we found that 56% of usages fit
the first sense; for modifiers, the number was 66%. In other words, judges did end up using
the first sense a majority of the time in their interpretations.

The results of this WordNet sense annotation process will be used at-length in the analysis
that follows.

6.2 Diversity by Di�culty
In this section, we investigate the hypotheses of Section 3 that relate to the diversity of
interpretations for a given compound and, in particular, analyze this diversity as it relates
to the di�culty of interpretation, as indicated by Turkers.

As a reminder, these hypotheses primarily claimed that:
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• Compounds that are easier to interpret should tend towards fewer possible or ‘best’
interpretations (H2).

• Compounds that are easier to interpret should require shorter paraphrases with less
diverse tokens, e.g., more prepositions and fewer verbs, given the expressive power of
verbs (H5).

These hypotheses are rooted in the principle of Occam’s Razor, as they assume that
the human brain favors simpler interpretations, when possible. Further, these hypotheses,
if validated, would suggest that ambiguity is a complicating factor when interpreting new
compounds.

As we were unable to collect paraphrases for Meaningless compounds, by virtue of their
definition, this section focuses primarily on the di�erences between compounds judged to be
interpretable with No di�culty or Minor di�culty.

Diversity of Interpretations

To begin, we look at the diversity of interpretations submitted for a given compound, as
judged by the number of di�erent synsets assigned to the compound’s head and modifier.
We divide our compounds into those for which a majority of judges deemed them to be
interpretable with No di�culty and those for which a majority deemed them to be inter-
pretable with Minor di�culty. As per Section 5.2, 96 and 68 compounds fit these definitions,
respectively. The remaining 86 compounds were ignored.

We computed the average number of senses per compound for the No di�culty and
Minor di�culty compounds, both for their heads and modifiers (recall that each compound
had between two and three paraphrases, as a majority of the judgments had to be of either
No di�culty or Minor di�culty, leaving room for at most one Meaningless judgment with
no sense annotation). Additionally, we computed the percentage of compounds for which
each interpretation used the same sense–in other words, those compounds on which human
judges provided a uniform, universally-agreeable interpretation. The results are presented
in Table 5 below.

Di�culty Mean Senses Single Sense

Head None 1.146 86.5%
Minor 1.324 72.1%

Modifier None 1.135 86.5%
Minor 1.191 80.9%

Table 5: The average number of senses in which the heads and modifiers of a set of compounds
were interpreted, segmented by di�culty of interpretation. The percentage of compounds for
which the head or modifier were used in a single sense is listed as well. Compounds judged to
be interpretable with Minor di�culty showed a more diverse range of interpretations, across
both heads and modifiers, than those judged to be interpretable with No di�culty.
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As shown in Table 5, Minor di�culty compounds demonstrated, on average, greater
diversity in interpretation, as reflected by increases of 15.5% and 4.9% in the mean number
of WordNet senses for heads and modifiers, respectively. Similarly, human judges were much
more likely to gravitate towards a universal interpretation for No di�culty compounds than
for Minor di�culty compounds, as seen in the increased single-sense percentage for No
di�culty compounds.

The results in Table 5 seem to validate hypothesis H2 from Section 3 in that compounds
that were more di�cult to interpret yielded a wider variety of interpretations and greater
ambiguity; whether this is a causal relationship remains unclear.

It is interesting to note that diversity was maximized for the heads of the Minor di�-
culty compounds. While this was an unforeseen result, we view it as further evidence of a
relationship between diversity and di�culty. As the name suggests, the ‘head’ of a noun
compound is the anchoring noun: it provides the base of the entity described by the series of
words. For example, the compound cider apple describes a type of apple, and the compound
jungle village describes a type of village. Thus, diversity of heads should be more indicative
of semantic diversity than diversity of modifiers, and this intuition is reflected in Table 5.

Diversity of Paraphrases

Next, we examine diversity with regards to the paraphrases submitted by Turkers.
As described in Section 4.2, each HIT contained explicit instructions as to how Turkers

should structure their paraphrases. Turkers were given strict instructions: their paraphrases
had to revolve around a relative clause or preposition. For example, a Turker presented with
the compound abbey assembly would be asked to fill in the phrase: “an abbey assembly is
an assembly that/of/from [...] abbey.” Submissions for this particular compound included:
“gathers at an”, as in, “an abbey assembly is an assembly that gathers at an abbey”; and “of
the people who work or live at an”, as in, “an abbey assembly is an assembly of the people
who work or live at an abbey”.

This format made it easy to analyze paraphrases programatically. In order to standardize
submissions, we wrote a short script to clean the submitted paraphrases and coerce them into
the format described above, taking into account, for example, that some Turkers included
the surrounding copy in their submissions, while others just filled in the blank (e.g., some
Turkers might submit “an abbey assembly is an assembly that gathers at an abbey”, while
others would simply submit, “gathers at an”). Others still deviated in non-substantial ways
from the required format, e.g., by preceding their paraphrases with fragments like “might
be” or “is probably”; these deviations were also smoothed out by the cleaning script.

As in the previous section, we grouped compounds by taking a majority vote over the
interpretability labels provided by Turkers. To enrich the analysis, we also introduced a new
category of compounds: Eccentric. This category included any compound that exactly two
human judges deemed Meaningless, with the third judge deeming it interpretable with No
di�culty or Minor di�culty.7 Given that two out of three human judges were unable to

7Note that Eccentric compounds would also be categorized as Meaningless compounds when using a
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interpret these compounds, the third judgment is of particular interest, as it likely required
significant creativity on the part of the interpreter, and this creativity should be embodied
by the relevant paraphrase.

In a way, Eccentric compounds are as close as we can get to including Meaningless
compounds in our paraphrase-based analysis, making them especially useful. However, only
27 compounds qualified as Eccentric, so their use is purposefully limited in our analysis.
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Figure 5: Diversity of paraphrases, as judged by four di�erent metrics and assessed over
compounds as grouped by di�culty of interpretation. As compounds become more di�cult
to interpret, human judges composed more advanced paraphrases, using fewer prepositions
and a greater number of tokens.

Recall that paraphrases submitted by Turkers took the form “modifier head is a head
that [...] modifier”, where the word ‘that’ could optionally be replaced by a preposition.
When analyzing paraphrases, we removed the surrounding context to extract the content in
the blank, as well as the leading preposition or the word ‘that’. This measure was taken to re-
move biasing our results towards longer compounds. For example, if we merely looked at the
length of paraphrases, then those paraphrases involving the compound hydrogen refrigerator
would of course be longer, on average, than those involving ant hill, by virtue of including a
longer compound. In the analysis that follows, then, when we refer to ‘paraphrases’, we’re
referencing the content used by Turkers to fill in the blank, as well as the leading preposition
or ‘that’.

In analyzing the diversity of paraphrases, we computed four key metrics:

• Average length: A measure of the raw number of characters in a paraphrase.

majority vote.
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• Average number of tokens: A measure of the raw number of words in a paraphrase.

• Average number of distinct tokens: A measure of the number of unique words in a
paraphrase.

• Percentage of paraphrases using prepositions: As prepositions come from a fixed set
(unlike verbs, which are theoretically unbounded in number), they are seen as a sim-
pler method of paraphrasing. As such, increased use of prepositions is indicative of
compounds that are easier to paraphrase and thus easier to interpret.

The values of these four key metrics, computed across the No di�culty, Minor di�culty,
and Eccentric compounds can be found in Figure 5. As is clear from the graphs, paraphrase
complexity and diversity correlated with di�culty of interpretation, as measured every met-
rics considered above. This correlation is consistent from No di�culty to Minor di�culty
compounds and from Minor di�culty to Eccentric compounds, with the exception of a very
minor length increase from Eccentric to Minor di�culty compounds.

The use of prepositions, for example, decreased as di�culty of interpretation increased.
From the submissions, it is clear that preposition usage is indicative of simplicity of interpre-
tation, especially for No di�culty compounds. For example, the compound mother requests
was deemed to be interpretable with No di�culty, and was paraphrased by one Turker as:
“mother requests are requests of a mother”. The paraphrase is simple and clear, reflective
of the compound itself, which is relatively straightforward. Similarly, the compound hermit
committee was judged to be interpretable with No di�culty and paraphrased as: “a hermit
committee is a committee of hermits”. Again, the simple paraphrase is indicative of the ease
with which the compound was interpreted.

On the other hand, take one of the Eccentric compounds, siphon letter, paraphrased by
one Turker as: “a siphon letter is a letter that draws attention away from other letters in
a word”. The core content of this paraphrase includes nine distinct tokens and, indeed, the
need for such an elaborate explanation is evident given the complexity of the compound.

The results in Figure 5 validate hypothesis H5 from Section 3, which claimed that com-
pounds that are more di�cult to interpret would demand more complex paraphrases. Intu-
itively, this finding is in sync with the manner in which we provide explanations in the real
world: concepts or compounds that are di�cult to understand are also di�cult to explain,
and, as such, require longer and more precise explanations.

6.3 Comparisons to Attested Compounds
The next step in our analysis was to look outside of the raw data collected on the AMT
platform by expanding our scope to include comparisons to attested compounds. As defined
in Section 2.4, attested compounds are those present in existing noun compound datasets.
Given the manner in which these datasets were constructed, attested compounds are assumed
to be easy to interpret and would often be familiar to human judges. For example, bike
company, data transfer, and fishing vessel are all attested compounds.
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Our set of attested compounds was composed of the union of the Kim and Baldwin [17],
Nakov and Hearst [27], Ó Séaghdha and Copestake [31], and Tratz and Hovy [41] datasets,
which range in size from over 18,000 to just 250 compounds. In total, this set included
20,710 distinct compounds.

Intuition: Why Compare to Attested Compounds?

To explain why attested compounds would be of interest to us in developing a theory of
interpretability, we return to the Principle of Compositionality. As defined in Section 2.1,
this Principle states that the meaning of a compound is a function of the meanings of its
constituent components and the way in which they are syntactically combined. In the context
of noun compounds, then, this Principle suggests that when interpreting a new compound,
a human judge would first parse its modifier and head independently, and then find some
way to combine their meanings.

Consider, then, encountering a new compound, like cotton cup. If we assume the Principle
of Compositionality, a human judge might first parse cotton and then cup. In their head,
they may think back to similar compounds following the pattern (ú cup). For example, our
set of attested compounds includes the compound paper cup. One might recall that paper
cup describes a “cup made of paper” and, by noting that cotton and paper are semantically
similar in that they both refer to materials, infer that a cotton cup could be a “cup made of
cotton.”

This intuition can be generalized even further to suggest that compounds of the form *
cup, where the modifier is replaced by a material like cotton or stone, are easier to interpret
than if we’d filled in the modifier with some other random word. In the end, this is a function
of the semantic similarity and the shared category membership of the modifiers in cotton
cup and paper cup.

In the context of our experiments, then, the question becomes: Can we model di�culty of
interpretation as a function of the semantic similarity between generated and attested com-
pounds? As in the example above, is cotton cup easier to interpret than, say, jungle cup, given
that, out of cotton and jungle, the former is semantically closer to paper. More generally,
given a generated compound, can we draw inferences about its di�culty of interpretation by
comparing it to the attested compounds that share either the generated compound’s head
or a modifier?

Evidence in support of such a model would be, by extension, evidence in support of
an approach to noun compound interpretation that makes use of familiar compounds and
attempts to draw links between the old and the new. In e�ect, such an approach could be
viewed as an exemplar- or nearest-neighbor-based model of interpretation: when given new
compounds, we search for semantically similar compounds with which we’re already familiar
and rely on those when developing novel interpretations.
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Methodology

Drawing on the intuition from the previous section, we modeled semantic similarity between
generated and attested compounds using head- and modifier-based comparisons based, sep-
arately.

For example, when comparing based on the similarity of modifiers, we would compare
cotton cup to paper cup as, in this case, we’re concerned with the semantic similarly of the
modifiers (cotton and paper) over compounds that share a head (cup).

Alternatively, when comparing based on the similarity of heads, we compare cotton cup
to, say, cotton shirt or cotton farmer, as we’re concerned with the similarity of the heads
(cup and shirt) over compounds that share a modifier (cotton).

Compound Modifier Variant Head Variant
cotton cup co�ee cup cotton farmer

lightning country wine country lightning bolt
bear helmet steel helmet bear bone
dinner o�cer prison o�cer dinner guest
beard alcohol grain alcohol beard trim

Table 6: Modifier and head variants for a set of generated compounds, where modifier
variants require a shared head, and head variants require a shared modifier. In both cases,
variants must be drawn from the set of attested compounds, i.e., those with which human
judges would typically be familiar.

We refer to these constructs as modifier variants and head variants, respectively,
such that paper cup is a modifier variant of cotton cup and cotton farmer is a head variant
of cotton cup. Several additional examples are presented Table 6. Note that variants must
be drawn from the pool of attested compounds. To simplify the experiment, we chose to
analyze the e�ects of modifier and head variants separately.

The synsets used for the generated and attested compounds were produced through the
process described in Section 6.1.

As discussed in Section 2.3, semantic similarity-based comparisons often rely on similarity
metrics built on top of WordNet. Recall that WordNet is modeled as a tree of synsets, which
represent semantic concepts. WordNet-based semantic similarity metrics typically look at
the distance between nodes in the WordNet graph using di�erent definitions of ‘distance’. For
example, the simplest metric, shortest-path distance, simply counts the length of the shortest
path between two synsets (nodes), which makes for a reasonable measure of similarity. For
example, the synsets paper.n.1 and cotton.n.1, defined as “a material made of cellulose pulp
derived mainly from wood or rags or certain grasses” and “soft silky fibers from cotton plants
in their raw state”, respectively, have a shortest-path distance of just 5. On the other hand,
the synset jungle.n.3, defined as “an impenetrable equatorial forest”, is a distance of 13 away
from paper.n.1. These distances are reflective of the semantic similarity between paper and
cotton, at least in the material senses of the two words, and the lack thereof between paper
and jungle.
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In addition to shortest-path distance, we made use of some more complicated metrics,
like Wu-Palmer Similarity, which is based on the depth of the two senses in the WordNet
taxonomy and the depth of their most specific ancestor node. The full list of evaluated
metrics can be found in Table 7 [25].

Name Acronym Description
Shortest-Path Distance SP Length of shortest path

Shortest-Path Similarity PS Maximum depth minus length of shortest path
Leakcock-Chodorow LCH Length of path, accounting for maximum depth

Wu-Palmer WP Length of path, accounting for common ancestor
Resnik RES Information content similarity

Lin LIN Semantic distance based on information content

Table 7: WordNet-based semantic similarity metrics and their respective definitions.

Overview of Variants

In comparing our generated compounds to attested compounds with which human judges
would often be familiar, we developed the concepts of head and modifier variants, which
rely on comparison between compounds that share either a modifier or a head, respectively.
As a given compound can have multiple head and modifier variants, we briefly discuss some
metrics related to variants of No di�culty, Minor di�culty, Eccentric compounds, with
figures presented in Table 8.

Compound Type Total Compounds Avg. Head Variants Avg. Modifier Variants
No di�culty 96 31.896 24.104

Minor di�culty 68 15.985 23.132
Eccentric 27 11.111 14.889

Table 8: The average number of head and modifier variants for Eccentric compounds, as well
as those labeled interpretable with No di�culty and Minor di�culty, based on a majority
vote over the judgments submitted on the AMT platform.

As seen in Table 8 above, the No di�culty compounds had, on average, over 31 and 24
head and modifier variants, respectively, while the Eccentric compounds had just 11 and
14. In other words, the average No di�culty compound shared a modifier with 31 attested
compounds, and a head with 24, while the average Eccentric compound shared a modifier
with just 11 and a head with just 14 attested compounds.

The compound with the most head variants was government power (as well as the three
other generated compounds with the government modifier), with 246 attested compounds
sharing that modifier. The compound with the most modifier variants was top group at 211
variants. Every compound had at least one head and at least one modifier variant, although
26 and 39 compounds had exactly one head and modifier variant, respectively.
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That the number of variants correlates inversely with di�culty is an interesting result,
and one that is in sync with the notion that human judges look for familiar variants when
interpreting new compounds: if a compound had a greater number of variants, one would
expect that it would be easier to find an attested compound semantically similar to a gen-
erated compound. In other words, if a head, for example, is used more commonly in noun
compounds in the wild, it likely fits into a greater variety of semantic relationships, and thus
a generated compound based on that head is more likely to be interpretable. In this way,
the number of variants can be viewed as a measure of the flexibility of the fixed component.

One might be tempted to view the number of variants for a given word as a proxy for its
polysemy, or the number of WordNet synsets in which the word occurs and thus the number
of senses in which it can be used. And, indeed, when constructing modifier variants, the
number of variants does correlate positively with the number of senses in which the fixed
head occurs. In particular, these two quantities exhibit a Pearson correlation coe�cient
of r = 0.1491 and a two-tailed p-value of 0.0274, therefore withstanding a 5% significance
test. Yet this correlation does not hold when comparing the number of head variants to
the polysemy of the fixed modifier, as the p-value for these two quantities reaches 0.6670.
Thus, while the number of variants is likely linked to polysemy, the concepts are distinct,
with the former more a measure of the frequency at which a given word occurs within the
general pool of noun compounds and the diversity of the semantic relationships in which it
can participate, and the latter, a measure of the raw senses in which it can be interpreted
(i.e., in isolation, outside of the context of noun compounds).

Modeling Di�culty as a Function of Distance

Next, we apply our WordNet-based semantic similarity metrics to the analysis of generated
noun compounds by relating them to their head and modifier variants. The algorithm
for computing similarity proceeded as follows: for each compound, for each judgment,8
for each attested variant (either head or modifier variants, depending on the experimental
configuration), we compute a semantic similarity vector between the synset assigned to that
judgment and the synset of the attested variant. The similarity vectors were then averaged
to produce a raw similarity score for the given compound type, be it No di�culty, Minor
di�culty, or Eccentric. The complete process is demonstrated in Figure 6 using the generated
compound hotel model and real paraphrases collected on the AMT platform.

Note that each compound will be represented by multiple similarity vectors, since we’re
computing a similarity vector for every pair of judgments and attested variants. A compound
could have as many as three di�erent judgments (i.e., three di�erent synsets corresponding
to the three paraphrases provided by Turkers) and hundreds of attested variants, making for
hundreds of similarity vectors per compound, in some cases.

As such, we had to take care in computing a raw score; depending on our methodol-
ogy, combining these vectors in di�erent ways could yield di�erent results with di�erent

8Note that if two judgments for a given compound end up using the same WordNet synset in their
interpretations, we include their similarity vectors twice to properly weigh the significance and relevance of
each interpretation.
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Figure 6: The process through which similarity vectors are generated, where f is a function
that takes two WordNet synsets and produces a similarity vector, and g is a function that
takes a set of similarity vectors and combines them to compute a raw score. Here, the
generated compound hotel model is interpreted in three di�erent ways by Turkers: first, as
a physical, miniature model; second, as an abstract model; and third, as a physical, human
model. Each of these senses of the word model is then compared to the heads of various
attested compounds that share the modifier hotel, such as hotel bar and hotel sta�.

hotel model

“spokesmodel for a hotel”“model that looks like a hotel”“model based on the hotel industry”
model.n.03model.n.01 model.n.04

hotel bar f(model.n.01, bar.n.01 ) f(model.n.04, bar.n.01 ) f(model.n.03, bar.n.01 )

hotel sta� f(model.n.01, sta�.n.01 ) f(model.n.04, sta�.n.01 ) f(model.n.03, sta�.n.01 )

...
f(model.n.01, ...) f(model.n.04, ...) f(model.n.03, ...)

g(v1, v2, ..., v

n

) : [float] æ float

implications. We examine three such approaches to vector combination:

• Cumulative average: In this model, we treated each similarity vector as an independent
data point. In other words, we simply computed the average for each metric over every
vector with no concern for which vectors corresponded to which compounds. This is
the most straightforward approach, but is susceptible to bias in that compounds with
more attested variants have a greater bearing on the final score. For example, while
one compound might produce a hundred data points, another could produce as few
as three; yet as each data point was treated independently, the first compound would
have a much more significant influence on the final score.

• Average of averages: In this model, we first averaged all of the vectors for a single
compound and then computed an average over the vectors of averages. This ensured
that each compound was weighed equally in computing the final score.

• Average of best-vectors: In some sense, averaging is an unfair process given the intuition
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behind this analysis. In motivating the use of semantic similarity, we proposed that a
human judge might seek out the ‘best-fit’ variant, i.e., that with which they’re familiar,
like the use of paper cup when interpreting cotton cup. Thus, it might be the case
that the closest variant is far more important than the average variant. As such, in
this model, we computed the score for each compound by taking its highest-similarity
vector, where ‘highest-similarity’ is selected by computing the vector with the largest
norm.9 These most-similar vectors were then averaged.

For each of these three approaches, the results, for head and modifier variants respectively,
are presented in Figures 7 and 8.

Analysis of Results

We now discuss the results presented in Figures 7 and 8 on Pages 39 and 40, respectively.
For each of the three approaches to computing an aggregate score, over every metric,

and when using both head and modifier variants, the outcome is nearly universal, barring
a few exceptions: compounds that are easier to interpret are more semantically similar to
their attested variants.

The di�erences are most pronounced when using the average of best-vectors approach,
where the average shortest path for modifier variants di�ers by as much as 1.628 between No
di�culty and Eccentric compounds. This is consistent with the intuition that human judges
search for the ‘best’ familiar compound when encountering a new, generated compound.

In some cases, there appears to be a large drop-o� between Minor di�culty and Eccentric
compounds, but only a small drop-o� from No di�culty to Minor di�culty compounds. As
in previous analysis, this is suggestive of the notion that Minor di�culty compounds float in a
grey area, but Meaningless (or, in this case, Eccentric, our proxy for Meaningless) compounds
are relatively clear-cut and are much more removed from the No di�culty compounds with
which human judges are typically familiar.

Between usage of the head and modifier variants, results were reasonably consistent. In
other words, neither the heads nor modifiers appeared to be significantly more helpful in
modeling di�culty as a function of distance to attested variants. For head variants, the
gaps between No di�culty and Minor di�culty compounds across the similarity metrics do
appear to be slightly larger, but the trends (decreasing similarity as di�culty increases) are
slightly more clear-cut when using modifier variants.

In general, the results seen in Figures 7 and 8 seem to validate several of the hypotheses
and ideas discussed above, namely H3 from Section 3, which claimed that semantic similarity
metrics and comparisons to attested compounds would be useful in gauging the interpretabil-
ity of a compound. Indeed, semantic similarity does seem to be a useful indicator in assessing
interpretability given the correlation between similarity scores and interpretability labels; in
particular, the similarity of generated and attested variants goes a long way towards illus-
trating which compounds can and cannot be parsed by human judges. The usefulness of

9As the shortest-path distance metric operates such that a lower value indicates greater similarity, we
took the inverse of the distance when computing the vector norm.
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Figure 7: Results for the distance-by-di�culty analysis performed by comparing generated
compounds to attested compounds with a shared modifier (also known as head variants).
The techniques for each plot, clockwise from left, are cumulative average, average of averages,
and average of best-vectors. In each plot, for each metric, scores are divided by the maximum
value observed for that metric. We plot the reciprocal of the shortest-path distance so that,
for each metric, larger values are indicative of greater similarity.

these semantic similarity features and comparisons to attested compounds will be evaluated
further in Section 6.6 below.

But the results of Figures 7 and 8 are most interesting insofar as they inform us of the
mechanisms by which human judges interpret new compounds. Based on the graphs below, it
would appear that comparisons to existing, known compounds are key to parsing unfamiliar
compounds and, as such, compounds for which such comparisons cannot be made are more
di�cult to understand.
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Figure 8: Results for the distance-by-di�culty analysis performed by comparing generated
compounds to attested compounds with a shared head (also known as modifier variants).
The techniques for each plot, clockwise from left, are cumulative average, average of averages,
and average of best-vectors.

6.4 Modeling Di�culty as a Function of Word Frequency
An alternative approach to understanding a compound’s interpretability label is to look at
the frequencies at which its constituent components (i.e., its head and modifier) occur in
corpora of English text. To put it simply, it could be the case that human judges consider
words that they see infrequently to be more di�cult to interpret and thus deem the compound
(of which those words are a part) di�cult to interpret as well. In some cases, the judge may
not understand the word, given that it is used sparingly in English; in others, the judge
could view the word as awkward or uncomfortable when used in a noun compound, or have
a general lack of familiarity with how that word is used in context, leaving them unaware of

40



other compounds based on that word and incapable of drawing comparisons, the importance
of which were demonstrated in the previous section.

In a way, this is an unsatisfying definition of di�culty. When we talk about di�culty
of interpretation for noun compounds, we are trying to get at the semantic relationships
between the various words that compose it. For a compound to be deemed uninterpretable
by virtue of the relative infrequency at which its constituent components are used is less
satisfying than, say, deeming it uninterpretable due to the inability to merge the respective
meanings of its constituent components in a sensible manner.

At the same time, it would be unfair and unwise to underestimate the e�ect that word fre-
quency can play on language understanding and production–an e�ect that has been demon-
strated many times in the past, as evidenced by the work of Ellis [9]. Thus, in the context
of this study, it is nonetheless important to look at the e�ect that frequency played on the
interpretability labels assigned by human judges. This can be useful both to shed light on
how judges made their decisions and to give us confidence in the significance of our results in
later sections, when we make claims as to the role that semantic similarity and other factors
played in influencing interpretability.

To start, we collected every word used as either a head or a modifier in any of the 250
generated compounds used in this first round of experiments. For each word in that set, we
determined the frequency at which it appears in English text using the Google Ngram Viewer
from Michel et al. [26]. Specifically, we treated each word as a unigram input, and the Google
Ngram Viewer reported the percentage of text comprised of that word, as computed across
a corpus of English books. The Google Ngram Viewer always returns frequency statistics
for several di�erent years; the value corresponding to the most recent year was preferred in
each case.

The summary statistics for frequencies of the heads and modifiers of these 250 compounds,
grouped by majority-voted interpretability label of the compound, are presented as box plots
in Figure 9.

Based on the plots in Figure 9, it is immediately evident that frequency counts correlated
with compound interpretability, to some degree. For each of the three interpretability labels,
there was a large right skew in frequency counts for the words composing compounds with
that label, which is consistent with the established observation that word frequencies follow
a heavy-tailed distribution [40]. In other words, there was a large proportion of words with
very low frequency counts, and a small proportion of words with significantly higher counts.

Although the correlation between frequency and interpretability is nontrivial, a sub-
stantial number of compounds deviate from the trend. For example, for both heads and
modifiers of Meaningless compounds, there are four outliers (i.e., words with frequencies be-
yond Q3 + 1.5 ú IQR) out of just 55 majority-voted Meaningless compounds, making for an
outlier rate of over 7%. In fact, for heads, five di�erent Meaningless word frequency counts
would be above the third quartile for the No di�culty box plot (9.1% of the data points);
and for modifiers, six di�erent Meaningless data points would be above the No di�culty box
plot’s third quartile.

On the low end of the frequency spectrum, we see that the medians and lower quartiles
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Figure 9: Frequency counts for the heads (left) and modifiers (right) of compounds, where
interpretability labels were determined by taking a majority vote over. Whiskers are calcu-
lated as the highest or lowest data points within 1.5 ú IQR of each quartile, and outliers are
depicted with circular or rectangular marks.

for the three box plots, for both heads and modifiers, are clustered together.
While the plots in Figure 9 do suggest that there was a relationship between interpretabil-

ity label and frequency of occurrence, the two observations above make it clear that there
were both: (1) compounds composed of very common words that received Meaningless labels,
and (2) compounds with very uncommon words that received No di�culty labels.

These observations hold true even if we plot the minimum frequency of any word in a
compound, rather than treating the frequencies of the heads and modifiers separately. In
other words, for each compound, we compute its frequency as by taking the lesser of the
frequencies corresponding to its head and modifier. The box plot for this minimum-frequency
approach is presented in Figure 10, which again contains a separate box plot for each of the
three interpretability labels, as determined by majority vote.

In Figure 10, we again see a large set of Meaningless compounds with frequently-occurring
heads and modifiers, as well as a clustering near the low end of the frequency scale.

From Figures 9 and 10, we can see a clear correlation between frequency of words and
interpretability labels. This correlation is somewhat unfortunate but reflects the reality of an
experimental setting in which human judges often treat uncommon words as more ‘di�cult’
to interpret. However, in the analysis above, we see that the frequency of words was not a
crucial factor in determining interpretability labels, as many compounds based on common
words were labeled as Meaningless, and compounds based on rare words were often labeled
as interpretable with No di�culty.
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Figure 10: Frequency counts for the minimum frequency of a compound’s head and modi-
fiers, where interpretability labels were determined by taking a majority vote. Whiskers are
calculated as in Figure 9.

6.5 Clustering Over Paraphrase Dependency Representations
In this section, we explore the impact of noun compound interpretability on paraphrase struc-
ture. In particular, we construct vector-space models over dependency representations of the
paraphrases collected on the AMT platform, and use these models to establish relationships
between paraphrase structure and ease of interpretation.

In linguistic analysis, it is common to convert documents from raw text to vector-space
representations. Typically, a document will be conceptually represented using a vector of
keywords, with each of those keywords being assigned a weight to represent its importance
both to the document and within the collection of documents. These output representations
are often easier to work with and allow for computations that would not have been possible
had the documents been represented as raw text [22].

As an example, a simplest model could count the number of occurrences of each word
in each document. Document similarity could then be computed by measuring the pairwise
cosine similarity of each vector. Even with this simplistic model, one can gain deep insights
into the structure of documents.

Common tasks made easy through the use of vector-space representations include:

• Determining which documents are ‘similar’ in a set of documents [12].

• Determining which words are most important in distinguishing the content of a docu-
ment [36].

• Determining various ways to cluster or categorize sets of documents [12].

In our analysis, we wanted to take a closer look at the paraphrases provided by Turkers
and, in particular, answer the above questions by treating our paraphrases as documents. For
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example, we may wish to identify the distinguishing factors of paraphrases, especially those
for which human judges had di�culty devising a reasonable interpretation. Answering these
questions would put us one step closer towards our goal of understanding the interpretability
of compounds.

However, it is important to recognize that our interest did not lie in the actual content
of the paraphrase. Given that we typically only examined the core of the paraphrase (i.e.,
the blank that Turkers were asked to fill in), most paraphrases did not contain a significant
number of tokens; often, the only non-preposition or article would be a lone verb, and deriving
insights on which verbs Turkers used would tell us more about the actual interpretations of
the compounds, rather than the process of paraphrasing.

Instead of using the paraphrases directly, then, we first passed each paraphrase through a
dependency parser and used the output representation as its representative document. These
representations captured the underlying grammatical and semantic structure of paraphrases,
rather than the exact words that composed them, which were relatively insignificant in
comparison.

As an example, given the compound surface colonies, a human judge could submit the
paraphrase, “a surface colony is a colony of people on a planet’s surface”. Had we used the
actual paraphrase as the representative document, our model would focus on keywords, like
‘people’ and ‘plant’. But when comparing this paraphrase to others, what’s more important
is its underlying structure, including the use of multiple propositions and a possessive term.

After computing the dependency representation of each paraphrase, we ran two models
over the set of documents:

• Term Frequency-Inverse Document Frequency (TF-IDF) Indexing: The TF-IDF model
computes the number of occurrences of each word across a set of documents and sepa-
rates out commonly-used words (especially stopwords, like ‘the’) from rarer, more sub-
stantive words (like ‘healthcare’ or ‘warfare’). The TF-IDF model assigns high weights
to words that appear frequently, but only in a small number of documents within the
overall set, as these words are likely indicative of the content of said documents [22].

• Latent Dirichlet Allocation (LDA): LDA centers on a creating a generative probabilistic
model of a corpus of documents. It is best known for its use in topic modeling, the task
of grouping documents based on common topics, which typically involves identifying
which topics influence which documents, and in what proportions [5]. For example,
with LDA, one might be able to discern ten di�erent topics governing a set of journal
articles, which could range from biology to computer science. An article on compu-
tational biology, then, would be influenced by both the biology and computer science
topics, in some quantifiable degree.

In the sections that follow, we will present the results produced by these two models.
While this analysis does not directly focus on the question of what makes a compound
interpretable, developing a more complete understanding of paraphrase construction is key
to composing a comprehensive theory of interpretability.
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The Stanford Dependency Representation

Dependency parsing is the task of uncovering the grammatical relationships between words
in a sentence. For example, given the sentence “The baby is cute”, an accurate dependency
parser would reveal that the ‘baby’ is the nominal subject of the clause.

There are a number of possible representations through which to express such dependen-
cies. Our representation of choice was the Stanford Typed Dependencies (SD) representation,
a representation “designed to provide a simple description of the grammatical relationships
in a sentence that can easily be understood and e�ectively used.” The SD representation
includes approximately10 50 di�erent grammatical relations, each of which, significantly, is
expressed as a binary relation between two tokens. The numeric modifier grammatical re-
lation, for example, is used when a number phrase modifies a noun by associating it with a
quantity, like “Charlie spent ten dollars”. In this case, the numeric modifier relation would
be between the words ‘ten’ and ‘dollars’. In this way, each grammatical relation in the output
representation captures the connection between two tokens [7].

“a co�ee cup is a cup that holds co�ee”
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Figure 11: The paraphrase “a co�ee cup is a cup that holds co�ee”, decomposed using the
Stanford Typed Dependencies (SD) representation, where subscripts refer to the position at
which each word occurs in the paraphrase. Reliance on the relative clause is reflected in
the link between the cup6 and holds8 nodes, which are connected with the relative clause
modifier (rcmod) binary relation.

The SD representation is useful in that it is simple, expressive, and easy to understand,
even to those without a strong background in linguistics. As an added bonus, the Stan-
ford Parser, an open-source tool, is freely available to quickly and accurately compute SD
representations of input phrases. As such, we used the Stanford Parser in the analysis that
follows. Specifically, we used v3.5.0 of the probabilistic content-free grammar (PCFG) parser
implemented by Klein and Manning [18] and trained over the SD representation [8].

10The approximation comes from the fact that, based on configuration parameters, the parser can vary
the set of possible relations.
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A sample compound, along with a paraphrase and its respective SD representation, is
presented in Figure 11.

TF-IDF Indexing

Our first approach was to run the TF-IDF algorithm over the SD representations of our
paraphrases, which, in the terminology of traditional vector-space model-based techniques,
served as our documents.

For each paraphrase, we first cleaned it through the process described in Section 6.2. The
cleaned paraphrase was then run through the Stanford Parser [18]. The output representation
from the Stanford Parser is a list of binary representations between words. The raw relations
were extracted (e.g., nn(coffee, cup) was transformed to nn), and these relations served as
the tokens for our TF-IDF model. Note that the TF-IDF model, as with most vector-space
models, uses a bag-of-words representation in which the ordering of tokens in a document is
considered irrelevant [22]. As such, the fact that these relations were between tokens in the
sentence that might not be adjacent, or that the relations may be out of order, is irrelevant,
given that these models only rely on frequency counts.

As an example, consider the compound and paraphrase from Figure 11. The SD repre-
sentation of this paraphrase was as follows:

det(cup-3, a-1)
nn(cup-3, coffee-2)
nsubj(cup-6, cup-3)
cop(cup-6, is-4)
det(cup-6, a-5)
root(ROOT-0, cup-6)
nsubj(holds-8, cup-6)
rcmod(cup-6, holds-8)
dobj(holds-8, coffee-9)

By stripping away the words in the relation and considering this to be an unordered list
of tokens, this paraphrase was represented with the vector: [det, nn, nsubj, cop, det,
root, nsubj, rcmod, dobj].

After computing these token vectors, we ran them through the TF-IDF Vectorizer im-
plementation provided by the scikit-learn Python library [35]. This produced an output
matrix M in which each row represented a document, each column represented a token, and
entry M(i, j) represented the importance of token j to document i, computed as the product
of the frequency of the token in the document and the number of documents containing that
token.

Once this matrix had been computed, there were several interesting operations that we
could perform, such as:

• Computing the paraphrases that were most similar (at a structural level) to a given
paraphrase. This was calculated by taking the cosine similarity of the TF-IDF vectors
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for each document, a useful metric for determining document similarity given vector-
space models [14], and reporting the n most similar documents (i.e., the n documents
with the highest cosine similarity score).

• Computing clusters of similar paraphrases. This was done by running the k-Means
algorithm over the TF-IDF vectors. k-Means, an iterative vector clustering technique,
aims to find the k ‘center’ points that minimize the cumulative squared distance from
any vector to its nearest center. The algorithm thus provides a method for grouping
documents by their respective cluster assignments. In particular, a document’s cluster
is determined by the center point to which it is closest [16]. In terms of paraphrases,
each cluster could be seen as representing a unique paraphrase structure.

Some sample results for the first task (computing similar paraphrases) are presented
in Figure 12, which displays the three most similar paraphrases for a number of di�erent
paraphrases. The key observation is that the structure captured by the TF-IDF vectors
extends beyond the mere identification of shared prepositions. Instead, we see how those
prepositions are used (e.g., in front of a verb vs. standing alone).

a pressure dispute is a dispute that is under a lot of pressure

a career practice is a practice that is part of a career

a player industry is an industry that comprise of player

a machine core is a core that is a part of the machine

an enterprise product is a product that is maintained by an enterprise

a cathedral performance is a performance that was performed by the cathedral

a government statue is a statue that was erected by the government

a cathedral performance is a performance that is given by a cathedral

a hotel model is a model that is a spokesmodel for a hotel

a business party is a party that is for the business

a city engineer is an engineer that works for a city

a city engineer is an engineer that works for the city

a sugar measure is a measure of sugar

an oil ring is a ring of oil

a cotton order is an order of cotton

an accident dispute is a dispute of an accident

Figure 12: The three most similar paraphrases for several di�erent target paraphrases. The
similarities reveal key structural elements of the paraphrases beyond their preposition of
choice. For example, the top-left paraphrases share the use of a verb-‘by’ pattern. The
top-right paraphrases are concise, using only the ‘of’ preposition; however, this is in stark
contrast to the bottom-right paraphrases, which also use the ‘of’ preposition, but with a
leading verb.

For the second task (clustering paraphrases), results are contingent on the number of clus-
ters that we choose to compute, i.e., the choice of k in the k-Means algorithm. For the sake of
demonstration, we choose k = 8. The results of the k-Means algorithm also vary based on a
chosen random seed. We set the global random seed to 0 using the np.random.seed(seed=0)
function provided by the Numpy scientific computing library [42]. The output clusters are
displayed in Figure 13 below.

From Figure 13, the common structure of paraphrases, as grouped by cluster, is evident
immediately. For example, some clusters, like Cluster 0 and Cluster 7, contain very
simple paraphrases based on prepositions. Cluster 1 again contains simple paraphrases,
but with a reliance on verbs. Meanwhile, Cluster 4 and Cluster 5 contain more complex
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paraphrases involving a range of grammatical structures, which are themselves indicative of
more elaborate explanations.

Cluster 0

drug orders are orders for drug

a party soup is a soup for a party

a peer version is a version that is for peers

Cluster 1

a life zone is a zone that protects life

a city dispute is a dispute that concerns a city

a nut engineer is an engineer that makes nuts

Cluster 2

government bars are bars that are run by the government

a student paper is a paper that was written by students

a chocolate burn is a burn that is caused by hot chocolate

Cluster 3

city members are members that live in the city

a neighborhood lake is a lake in a neighborhood

a future actor is an actor that will act in future

Cluster 4

blanket months are months of the year when you need a blanket to stay warm

an automobile dune is a dune that is to be driven on by automobiles

a part decision is a decision on who will be playing which part

Cluster 5

a pressure dispute is a dispute that is under a lot of pressure

a sea machine is a machine for converting the motion of the sea to energy

citizen teams are teams that are made up of citizens

Cluster 6

a top group is a group that is on top

surface colonies are colonies on contaminated surface

an acting fair is a fair where people showcase their acting

Cluster 7

a bacon sauce is a sauce from bacon

enemy signals are signals from the enemy

a sports price is a price that you place on sports

Figure 13: Sample paraphrases from each of the eight clusters generated by the TF-IDF
method. The distinctive characteristics of each cluster are evident, even with the small
sample size. For example, Cluster 0 contains very simple paraphrases that make use of
prepositions, especially “for”; Cluster 1 too contains simple paraphrases, but in this case,
these paraphrases rely on verbs; on the other hand, Cluster 4 contains complex, diverse
paraphrases involving a wide range of grammatical structures.

We can use these clusters to identify structural di�erences between the paraphrases as-
sociated with Minor di�culty and No di�culty judgments. In Section 6.2, we saw that
compounds that are more di�cult to interpret were given longer, more complex paraphrases
by human judges. Now that we have developed a framework for clustering paraphrases based
on grammatical and structural properties, we can try to extend this observation into a more
nuanced model. In particular, for each of the k clusters output by the k-Means algorithm,
we can check what percentage of the paraphrases in that cluster belonged to No di�culty,
Minor di�culty, and Eccentric judgments.

Note that, for this analysis, we’re no longer determining the appropriate interpretability
label for a given paraphrase by taking a majority vote over the judgments leveled on its
matching compound. Since this analysis is per-paraphrase, we can instead use the inter-
pretability label associated with that paraphrase directly.11 For that reason, each Eccentric
judgments would also qualify as a No di�culty or Minor di�culty judgment, based on the
definition of Eccentric. To avoid over-counting, we thus treat Eccentric paraphrases as solely
Eccentric, and ignore the fact that the user labeled it as interpretable with No di�culty or
Minor di�culty.

11For example, under a majority vote scheme, if a compound received two Minor di�culty judgments
and one No di�culty judgment, we would still label each paraphrase as paired with a Minor di�culty

compound. However, in this section, we would pair each paraphrase with the interpretability label of its
judgment directly.
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The results of this analysis are presented in Figure 14. To highlight the di�erence in
breakdowns across clusters, we normalize the counts by dividing the number of paraphrases
of a certain type in each cluster by the total number of paraphrases in that cluster.

0 1 2 3 4 5 6 7

0.4

0.6

0.8

1

Cluster ID

Pr
op

or
tio

n
by

D
i�

cu
lty

No di�culty Minor di�culty Eccentric

Figure 14: A breakdown of the paraphrases in each cluster by di�culty of interpretation.
Cluster 0, with no Eccentric paraphrases and a larger proportion of No di�culty para-
phrases than any other cluster, seems to capture some grammatical or semantic structure
indicative of ease of interpretation.

Certain clusters, like Cluster 4, seem to identify paraphrases linked to di�cult inter-
pretations, as the normalized counts indicate that this cluster contained a larger proportion
of Minor di�culty and Eccentric paraphrases than any other cluster. On the other end of
the spectrum is Cluster 0, which contains more than twice as many No di�culty as Minor
di�culty paraphrases–and no Eccentric paraphrases. If we look at the contents of these two
clusters, Cluster 0 contains paraphrases that are short and preposition-based, like “drug
orders are orders for drug”, while Cluster 4 contains paraphrases that are longer and, for
lack of a better word, more eccentric, utilizing grammatical devices that are relatively un-
common. A useful example comes from the compound wastebasket inventions, for which one
judge submitted the following paraphrase: “wastebasket inventions are inventions that no
[sic] practical and balled up and thrown away in wastebasket”.

While these observations are somewhat anecdotal and based on just one run of the k-
Means algorithm, the results are promising. In particular, they demonstrate that vector-
space models can be useful in developing a better understanding of how paraphrases are
constructed and the extent to which a paraphrase’s structure reveals information about the
di�culty of its composition. Importantly, these results also validate hypothesis H5 from
Section 3, which claimed that more complicated paraphrases would correlate with di�culty
of interpretation.
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Latent Dirichlet Allocation

Next, we ran a similar experiment to that described in the previous section, but with a very
di�erent model anchoring our exploration: the Latent Dirichlet Allocation (LDA) model
of Blei et al. [5]. As discussed above, LDA takes a Bayesian approach by constructing a
generative probabilistic model that views documents as mixtures over a set of underlying
topics. Topics, in turn, are modeled as distributions over tokens.

In general, LDA attempts to improve over the TF-IDF model by providing a better
measure for inter- and intra-document statistical structure, per Blei et al. [5]. As with
the TF-IDF model, topics in the LDA model are typically computed over a document’s
raw text tokens, rather than other lexical features, like part-of-speech tags or, in our case,
binary dependency relations between tokens in the document. However, such an approach
is not unprecedented. For example, Wong et al. [44] showed that topic modeling with LDA
over part-of-speech tags is useful in solving the problem of native language identification.
Informally, Wong et al. found that certain bigrams of part-of-speech tags were common in
certain languages, which rendered them useful in determining a speaker’s native language.
In fact, according to Wong et al. [44] their topics over part-of-speech tags provided more
useful clustering of terms than their topics of functional keywords.

It is under a similar motivation that we bring topic modeling, and the LDA model in
particular, to the analysis of paraphrases. Specifically, and as in the TF-IDF experiment
above, we ran our paraphrases through the Stanford Parser and subsequently constructed a
topic model over the paraphrases’ SD representations. In this topic model, topics composed
mixtures over SD binary relations; as such, each topic could be viewed as representing a
grammatical style.

Our experiment relied on the lda package hosted on the Python Package Index. The lda
implementation is based on collapsed Gibbs sampling. Additionally, as LDA is a technique
that requires the number of underlying topics to be hard-coded and decided upon before-
hand, we present in this section results from just one run of the algorithm, with the goal of
presenting a glimpse into the potential usefulness of topic modeling and, as with the previous
section, vector-space models for understanding paraphrases.

As with the TF-IDF-based analysis, we were required to determine the number of topics
in advance. In this case, we chose to construct five distinct topics. Again, randomization was
standardized by calling the np.random.seed(seed=0) function provided by Numpy [42]. A
portion of our results are displayed in Figure 15 which contains, for each of the five topics:

• The three most frequent SD relations for that topic, ignoring det, nsubj, nn, root,
cop, and rcmod, as these relations were present in nearly every paraphrase due to the
structure enforced by our HIT template, as described in Section 4.2.

• Two paraphrases for which that topic contributes more than any other topic, based on
the underlying mixture. These paraphrases are thus considered to be representative of
the style captured by that topic.

The results produced by the LDA model di�er from those of the TF-IDF model described
in the previous section. While the divergence in output speaks, at some level, to the di�er-
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ences between the two models (which are not entirely relevant to this discussion), in terms of
the usefulness of analyzing paraphrases, we can continue to learn about the distinctive ele-
ments of paraphrase structure. In general, it was more di�cult to assign clear interpretations
to the LDA topic clusters, perhaps due to the lack of discrimination between frequently-used
relations and those that capture important characteristics of a paraphrase.

The most interesting topic is Topic 0, which appears to capture the passive voice, making
strong use of the nsubjpass, or passive nominal subject, and auxpass, or passive auxiliary
relations. By segmenting the paraphrases based on their most influential topics, we also find
that Topic 0 is indicative of low di�culty paraphrases. In particular, of the paraphrases
for which Topic 0 was most influential, 62.5% of them were labeled No di�culty, 37.5%
Minor di�culty, and 5.5% Eccentric.12 This was the highest percentage of No di�culty and
lowest percentage of Minor di�culty paraphrases for any topic, by margins of over 4% in
both cases. In a sense, then, we can see how topics are a useful mechanism for unveiling
hidden grammatical structure, and that this structure can be indicative of the di�culty of
interpretation and paraphrasing.

Topic 0 | nsubjpass, auxpass, agent

trust money is money that has been put in a trust

a jungle paper is a paper that is printed with a jungle scene

Topic 1 | dobj, prep for, prep in

a summer dispute is a dispute that takes place in summer

an automobile dune is a dune that is suitable for automobiles

Topic 2 | dobj, prep of, amod

a life zone is a zone that encompasses all aspects of daily life

a daisy baby is a baby that has blonde hair like a daisy

Topic 3 | prep of, amod, conj or

a top group is a group that or the best group or the elite group

an air zone is a zone pertaining to air combat or atmospheric condition

Topic 4 | amod, dobj, aux

a product step is a step that has to do with product

a jungle range is a range that is with no clear view jungle

Figure 15: Topics constructed using the Latent Dirichlet Allocation (LDA) model. For each
topic, we list: the three Stanford Typed Dependency (SD) relations, ignoring relations that
were common to every paraphrase; and two representative paraphrases, to which the listed
topic was the most influential.

While some topics exhibit distinctive characteristics (e.g., Topic 3 captures the use of
the conj or, or conjugate ‘or’ relation), others overlap or fail to capture an immediately
obvious grammatical structure (e.g., Topic 4 and Topic 3 both make heavy use of the
amod, or adjectival modifier relation; it is thus di�cult to identify either of them as the
‘amod topic’).

While this section gave just a glimpse into the use of vector-space clustering for analyzing
paraphrase structure, it is clear from the analysis above that the structure of paraphrases
can be useful in identifying aspects of interpretative di�culty, and, further, that dependency
relations can appropriately capture grammatical structure. However, given the relatively
small size of our dataset and the limited nature of this analysis, many of the topics output
by our model appear to be lacking in distinctive characteristics. While this could be a
function of the number of topics chosen, in the future, it would be interesting to extend this

12Recall that an Eccentric paraphrase will also be a No di�culty or Minor di�culty paraphrase, so the
three categories do not add up to 100%.
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analysis over a larger dataset and dive more deeply into the characteristics that make topics
identifiable.

6.6 Training a Classifier
In this section, we explore the task of training machine learning classifiers to identify the
interpretability label of a given compound. In particular, we explore two possible approaches
and data sources, with the goal of demonstrating that both are useful features in the context
of training a classifier and, as such, capturing the notion of interpretability:

1. Comparisons to attested compounds with a shared head (modifier variants) or modifier
(head variants).

2. Paraphrases, as submitted by human judges.

In both cases, we had to develop a formulation in the classical machine learning setting
(e.g., determining feature vectors, labels, training and testing data, and so forth). When
evaluating the performance, the goal was not to prove that the construction of such a model is
possible, but rather, to further demonstrate that these sources of data are helpful in assessing
the noun compound interpretability.

We start by discussing a formulation of the machine learning problem in which we train
our model using semantic similarity metrics and, in particular, comparisons to attested com-
pounds. Afterwards, we present a di�erent formulation in which we rely on user-submitted
paraphrases, specifically the TF-IDF vectors based on Stanford Typed Dependency (SD)
representations of the paraphrases, as discussed in Section 6.5.

Training Against Attested Compounds

When training a model using comparisons to attested compounds, our basic unit of data is
a pair of generated and attested compounds. For example, the pair cotton cup, co�ee cup
might produce one such unit of data. However, for each sense (based on WordNet synsets)
in which head and modifier of the generated compound was used, we add a separate training
example, such that if one judge interpreted ‘cup’ as a container for holding liquid and another
as a trophy, these two senses would merit inclusion as separate examples.

In simplest terms, for each compound, for each judgment,13, for each attested variant,
we add a training example. The training example has a corresponding feature vector that is
computed using the synset annotations described in Section 6.1.

To be as explicit as possible, let’s walk through a more detailed example, again based on
the compound cotton cup. Assume this compound has two modifier variants, co�ee cup and
plastic cup. When gathering our three judgments on the AMT platform, two judges interpret
the modifier cotton in a sense best matched to the WordNet synset cotton.n.1, while the third

13As our feature vectors are computed using WordNet synsets, we have to treat each judgment for a
given compound as a separate training example, as di�erent judgments might make use of di�erent WordNet
synsets.
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judge interprets it in a sense best matched to cotton.n.2. Recall that for attested variants,
WordNet synsets were determined with the first-sense heuristic, such that the modifier of
co�ee cup would always be represented with the synset co�ee.n.1. In augmenting our training
data set, we would produce a training example based on the following pairings of synsets:
cotton.n.1 and co�ee.n.1 ; cotton.n.1 and co�ee.n.1 again, as cotton.n.1 was used twice in
judgments submitted by Turkers; and, finally, cotton.n.2 and co�ee.n.1. A similar set of
judgments would be added for the remaining modifier variant, plastic cup, and the process
would be repeated for head variants.

However, this explanation leaves several questions unanswered, including:

1. How should we decide on a training label for each unit of data? For example, if one
compound receives two No di�culty judgments and one Minor di�culty judgment, do
we label every example involving this compound as No di�culty (i.e., take a majority
vote), or should the data corresponding to the Minor di�culty judgment have a Minor
di�culty label?

2. Which features should we include in the feature vector? Should we stick to WordNet-
based semantic similarity measures? Or should we include additional features, like the
Latent Semantic Analysis (LSA) similarity score computed between the generated and
attested compounds?

3. Should we include an example for every pair of generated compounds and attested
variants? Or can we come up with a more nuanced approach?

4. Should we use head or modifier variants (as defined in Section 6.3)?

5. If we’re relying on WordNet synsets to compute feature vectors, how can we train on
Major di�culty compounds, for which there is no synset?

In the analysis that follows, we consider each of these questions to be a di�erent configura-
tion parameter and evaluate the results across every combination of parameters. Specifically:

1. When parameter M is enabled, we use a majority vote to determine interpretability
labels; otherwise, we use the label of the submitted judgment. For example, if a com-
pound received two votes for No di�culty and one vote for Minor di�culty, we would
label every example based on that compound as No di�culty, even those examples
produced by the Minor di�culty judgment.

2. When parameter F is enabled, we include two semantic similarity measures that come
from outside of WordNet: Latent Dirichlet Allocation (LDA) similarity [5], and Latent
Semantic Analysis (LSA) similarity [19]. Both of these measures aim to capture the
similarity of two words based on contextual usage. As such, the output scores are
relative to a corpus of text on which a model must be trained. To compute the scores,
we used the open-source SEMILAR software package from Rus et al. [39], which is
trained over the SIMILAR corpus, a combination of the TASA corpus and Wikipedia
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[38]. When the parameter F is disabled, feature vectors are restricted to the following
WordNet semantic similarity measures, computed over the relevant synsets for the given
judgment and attested compound: Shortest-Path Distance, Path Similarity, Leacock-
Chodorow Similarity, Wu-Palmer Similarity, Resnik Similarity, JCN Similarity, and
Lin Similarity.14

3. When parameter C is enabled, for each compound, we take the set of synsets that map
to all of its attested variants, add in the synset for the current judgment, and run
a graph clustering algorithm over the synsets (specifically, the A�nity Propagation
algorithm from Frey and Dueck [11], which allows for unsupervised clustering and
automatically discerns an appropriate number of clusters); we then limit the included
examples to those for which the attested synset ended up in the same cluster as the
generate compound’s synset. The intuition here is that a set of attested compounds
may represent a variety of interpretations of the shared head or modifier, and by
clustering, we can instead compare the generated compound to the set of attested
compounds to which it is semantically closest, thus reducing noise.15 If C is disabled, all
pairs of generated compounds and attested variants pairs are included, indiscriminately.

4. When variant=head, experiments used head variants; when variant=modifier, mod-
ifier variants were used instead. As such, experiments were run separately on head and
modifier variants, with the aim of determining which component (i.e., the head or the
modifier) is most useful in assessing interpretability.

5. Meaningless compounds were included in the dataset, and the first-sense heuristic was
used to assign synsets to their heads and modifiers. Since many of the questions around
interpretability involve determining whether a compound is interpretable at all, it was
considered important to include these Meaningless compounds.

For each permutation of parameters, we trained an AdaBoost classifier with decision trees.
To be precise, ensembling was limited to 100 or 1,000 weak learners (the exact choice is made
clear when reporting results), which were themselves limited to a depth of two. Performance
was assessed using k-fold cross validation with k = 8, with accuracy rates averaged across
folds.

In Table 9 and Table 10, we present the results for a classifier trained on comparisons
to head and modifier variants, respectively. Both tables include separate accuracy scores for
each combination of configuration parameters.16 In addition, we note the baseline accuracy

14For those WordNet-based similarity metrics that relied on a measure of Information Content, the Brown
Corpus was used due to ease of implementation. However, it is noted that these measures could be improved
by using a larger and more substantive corpus.

15As an example, assume the modifier of cotton cup is interpreted by one judge using the synset cotton.n.1.
The attested modifier variants include co�ee cup and plastic cup, which are then represented with the synsets
co�ee.n.1 and plastic.n.01. When clustering over the WordNet graph, plastic.n.1 and cotton.n.1 are placed
in the same cluster as they are both materials, but co�ee.n.1 is placed in a separate cluster. If C were
enabled, only the variant plastic cup would be considered when adding training examples.

16Certain superfluous combinations of parameters are excluded.
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(i.e., the frequency of the most commonly occurring label) for every such combination, which
varied as certain parameters impacted the manner in which examples were generated and
the criteria by which they were included.

Head Variant Comparisons

Num. Learners M + C + E M + C M C (None)
Baseline 46.18 46.18 65.28 41.99 56.71

100 74.66 71.88 66.47 54.87 57.28
1,000 84.08 80.89 70.57 58.53 57.45

Table 9: The accuracy of an AdaBoost classifier with two-level decision trees, trained on
comparisons between generated compounds and attested head variants, over a variety of
configuration parameters. The values in the table represent percentages, computed as an
average over eight folds in a k-fold cross validation setup.

Modifier Variant Comparisons

Num. Learners M + C + E M + C M C (None)
Baseline 46.30 46.30 49.14 45.51 47.52

100 74.99 69.34 57.81 53.19 49.89
1,000 86.28 81.70 66.91 56.18 53.16

Table 10: The accuracy of an AdaBoost classifier with two-level decision trees, trained on
comparisons between generated compounds and attested modifier variants, over a variety of
configuration parameters. The values in the table represent percentages, computed as an
average over eight folds in a k-fold cross validation setup.

There’s much to be learned from the results in these two tables. When comparing against
both head and modifier variants, learning against majority-voted labels was far easier and
more successful than learning against per-judgment labels. In the latter scenario, it was
possible to have multiple identical training examples with di�erent interpretability labels,17

which led to contradictory data and an inherently impossible learning task; thus, it is not
surprising that the majority formulation was more successful.

Additionally, we found that clustering attested variants was a highly e�ective technique
for improving performance. For head variants, the use of clustering led to accuracy increases
of over 5% and 10% for 100 and 1,000 learners (against a baseline that was nearly 20% more
di�cult), while for modifier variants, accuracy increased by nearly 12% and 15% for 100 and

17For example, if the compound cotton cup was interpreted by one judge as interpretable with No di�culty

and, by another, as interpretable with Minor di�culty, and assuming both judges used the sense cotton.n.1

(as identified by the content of the paraphrases they submitted), and assuming that the modifier variant co�ee

cup is present in our attested dataset, we would include the examples (f(cotton.n.1, co�ee.n.1), No di�culty)
and (f(cotton.n.1, co�ee.n.1), Minor di�culty). Thus, two examples would be produced with an identical
feature vector and non-identical labels.
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1,000 learners (against a baseline that was around 2% more di�cult). This speaks to the
suggestion, proposed earlier, that attested variants might represent a few di�erent, broad
senses, and that honing in on the closest cluster of senses would be a useful technique. In
other word, the results above would suggest that the closest cluster of semantically similar
variants is far more useful in judging interpretability than, say, the average variant.

Further, the use of extra, non-WordNet-based features (in this case, LDA and LSA simi-
larities) led to improved performance, typically increasing accuracy by around 5%, a number
that was consistent between head and modifier variants, and across the number of weak
learners. The usefulness of these features is further evidence that these types of similarity
metrics (in this case, semantic measures based on contextual similarity) can help capture the
notion of interpretability for new compounds, especially insofar as they relate to attested
compounds.

It should be noted, however, that this formulation of the task is not completely faithful to
reality. Specifically, for each judgment of a generated compound, for each attested variant,
we’re adding a unit of training data to the dataset. As such, our results could be biased
towards compounds with many attested variants or be otherwise skewed in a way that is not
immediately obvious.

In a more realistic formulation, one might represent each generated compound (or each
judgment) as a single unit of data, computing a single feature vector to capture the similarity
of that judgment to every attested variant. For completeness, we implemented a scheme
that followed this logic. In particular, we left the data generation step as above, but when
computing output labels over the test set, took a majority vote over every unit of data linked
to a given generated compound.

However, in this formulation, classifiers performed poorly. The most significant issue was
a lack of data: between folds in the k-fold cross validation, accuracy fluctuated from 20% to
60%, as the size of our dataset was reduced to fewer than 250 data points (i.e., the number
of compounds for which we have a clear majority label), whereas in the previous setup, our
dataset contained over 14,000 (generated, attested) pairs.

As a whole, the complicated and nuanced formulation of this experiment left us skeptical
of its significance–or, at the very least, the applicability of its results. In the end, this analysis
was most useful for identifying factors that are important or unimportant in determining the
interpretability of a compound, e.g., the use of LSA and LDA, and the clustering of attested
variants. Further, the machine learning techniques explored in this section represent just a
small sampling of those used across the field. Future work could focus on testing a wider
range of classifiers trained on a larger dataset, which would allow for a formulation of the
problem in a manner more suitable to real-world applicability (i.e., in which each compound
is represented by a single training example).

Training Against Paraphrases

In this section, we explore the idea of training a machine learning classifier using the TF-
IDF vectors from Section 6.5. The setup here is far simpler than that of the attested variant
comparison-based classifier described above. Specifically, as each judgment includes both
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an interpretability label and a paraphrase, we map judgments to training examples in a
one-to-one manner by treating the interpretability label as a training label and the TF-IDF
vector (computed over the SD representation of the paraphrase) as its feature vector.

As such, our features are TF-IDF frequencies of the various binary relations used in the
SD dependency representation system. In this formulation, then, producing a classifier that
outperformed the baseline would imply that the grammatical structure of a paraphrase helps
capture the interpretability of its corresponding compound. A similar claim was made in
Section 6.5; we attempt to bolster it further with evidence drawn from the machine learning
setting.

Before presenting the results produced by classifier, we first discuss the details of our
training and testing environments. These are introduced via comparisons to the setup of the
previous section:

• In the previous section, we took the majority vote over a compound’s labels as the
ground-truth label for our machine learning classifier. Part of the reason that this was
necessary was that we were adding a di�erent training example for each judgment and
for each attested variant. Thus, if two judgments (for the same compound) di�ered
in their interpretability labels and we did not use the majority vote as its label, we
could end up with contradictory training data in the form of identical feature vectors
with non-identical labels. In our new setting, this concern is no longer relevant, as no
two paraphrases for the same compound are (presumably) similar enough to lead to
the same feature vector. As such, for each judgment submitted by Turkers, we use the
interpretability label of that judgment (rather than a majority vote) when training our
model.

• In the previous section, recall that we were able to include Meaningless compounds
by using the first-sense heuristic to guess the most relevant WordNet synset for that
compound. As a reminder, this measure was required due to the lack of a paraphrase
for Meaningless judgments; compounds that are deemed Meaningless by Turkers, by
definition, should not be paraphrasable. As the setup in this section relies so strongly
on the presence of paraphrases, we cannot gloss over their absences in the same way.
Thus, Meaningless compounds had to be excluded from our analysis, making this a
two-label problem in which the classifier was trying to discern whether a paraphrase
corresponded to a No di�culty or Minor di�culty judgment.

Given these decisions, we ended up with 545 training examples that followed the split
presented in Table 11.

These 545 examples were fed to a Support Vector Machines (SVM) classifier using the
radial basis function (RBF) kernel, a regularization parameter of C = 1.0, a gamma param-
eter of “ = 0.001, and auto class weighting. These parameters were selected through a grid
search over three di�erent kernels (RBF, as well as the sigmoid and linear kernels) and an
exponential range of regularization and gamma values. The accuracy of a classifier trained
on each combination of parameters was assessed using k-fold cross validation for k = 8.
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Category Size
No di�culty 302

Minor di�culty 243
Total 545

Table 11: Breakdown of the training dataset for the paraphrase-based machine learning
classifier, where the value in the right column indicates the number of examples falling
under the designation listed on the left.

After tuning these parameters, we evaluated our model using k-fold cross validation for
k = 10, averaging the accuracies reported over 10 random restarts. In e�ect, we ran the
10-fold cross validation 10 separate times, which allowed us to evaluate performance over
100 distinct folds. The results are presented in Table 12.

Round Folds > Baseline Avg. Accuracy (%)
1 5 55.63
2 6 56.68
3 6 56.51
4 4 55.98
5 6 56.39
6 7 56.49
7 8 57.96
8 7 56.89
9 7 56.86
10 5 55.24

Table 12: Performance of an SVM classifier trained to predict a judgment’s interpretability
label (either No di�culty or Minor di�culty) using a vector-space representation of its
corresponding paraphrase. Each round consisted of a 10-fold cross validation assessment.
In the middle column, we report the number of folds in that round for which accuracy
was strictly greater than the baseline (55.3%) and bold the result if at least half of folds
represented an improvement. On the right, we display the average accuracy, which is similarly
bolded if it represents an improvement over the baseline.

As is evident from Table 12, average accuracy was strictly greater than the baseline of
55.3% for all but one random restart. Similarly, for all but one random restart, at least half
of folds performed above the baseline. Taking the average accuracy across all folds and all
random restarts, the classifier correctly predicted the label 56.46% of the time, an increase
over the baseline of more than 1%. If we restrict our view to those 61 folds for which we
improved over the baseline, the average accuracy was 60.92%, an increase of over 4%.

While these increases may seem minor, it is important to recall that this experiment
consisted of just over 500 labeled examples–a relatively small dataset for a machine learning
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problem. Additionally, the consistency of these increases across random restarts and random
folds is evidence of their significance. In other words, the di�erences represent more than
just random noise.

The feature vectors used in this experiment could be augmented in multiple ways, some
of which would likely lead to the training of a more accurate model. However, the goal of
section is not to optimize for model accuracy; instead, we aim to validate the usefulness of
paraphrases in informing compound interpretability.

Thus, we focus on the existence of this performance increase, rather than its magnitude.
And with that in mind, the increase is rather remarkable. Recall that the feature vectors
used in this setting did not contain any of the original content from the user-submitted
paraphrases. Instead, they contained the TF-IDF scores as computed over the dependency
representations of those paraphrases. Using these dependency relationships and nothing else,
we were able to train a classifier to predict a judgment’s corresponding interpretability la-
bel and consistently improve over the baseline. The conclusion: paraphrase structure–and
structure alone–is a true and useful indicator of compound interpretability.

7 Extending to Peer Compounds
In our first round of experiments on the AMT platform, we asked human judges to label
unfamiliar, machine-generated noun compounds as interpretable with No di�culty or Minor
di�culty, or indicate that they were Meaningless, as well as provide a paraphrase for the
compound, if possible. The goal of these experiments was to enable us (the experimenters)
to develop a theory of noun compound interpretability.

As seen in previous sections (most notably, in Sections 6.3 and 6.6), a driving force
behind our analysis was the use of semantic similarity measures, especially those based on
WordNet synsets, to evaluate how closely a new, unfamiliar compound reflected those with
which human judges were already familiar. In particular, we found that the interpretability
of generated compounds correlated with the distances between those compounds and their
attested variants, where ‘distance’ was evaluated on the basis of semantic similarly.

These findings inspired us to explore the idea of generating new compounds based on pre-
dictable deviations from the compounds we generated to create our initial dataset. This new
batch of generated compounds could then be used to evaluate the e�ect of these predictable
deviations on compound interpretability.

To be more precise: after running our initial batch of experiments and annotating the
user-submitted paraphrases with WordNet synsets as described in Section 6.1, this left us
with a specific sense in which a modifier and head was used, for each noun compound. By
mutating those senses through specific WordNet relations, like those defined in Section 2.4,
we were able to create new noun compounds, referred to as peer compounds, that di�ered
predictably from the original compounds, known as root compounds, from which they were
generated. In particular, the peer compounds could be more abstract (if they were generated
by moving upwards in the WordNet graph), more specific (if they were generated by moving
downwards), or di�er in some other way from the root compounds. (The exact methodology
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behind the dataset generation is detailed in Section 7.3 below.) Importantly, the root com-
pounds from which these peer compounds were created had already been assigned ‘ground
truth’ interpretability labels based on the data collected in the first round of experiments.
This allowed us to make precise observations as to how deviations in the WordNet graph
were reflected by changes in interpretability labels.

Once we had generated our batch of peer compounds, we ran the same experiment on the
AMT platform as in the previous section (see Section 4.3 and Section 4.2 for details), but
over this new dataset. The same rating system for interpretability (based on the scale of No
di�culty, Minor di�culty, and Meaningless) was used, and the same format for paraphrases
(based on the relative clause or use of a preposition) was requested and required. Upon
completion, the same steps were taken to annotate WordNet synsets, clean paraphrases, etc.

This portion of the report is structured as follows: First, in Section 7.1, we discuss some
of the motivating factors and ideas behind this experiment; Section 7.2 then translates these
motivations into key hypotheses; next, in Section 7.3, we provide details as to how our new
dataset was constructed; in Section 7.4, we discuss some of the high-level statistics from the
experiment before analyzing the results in more detail in Section 7.5.

7.1 Motivation
We begin with a discussion of the intuition behind this round of experiments.

Recall that, in WordNet, synsets are structured such that more abstract concepts are
positioned closer to the WordNet root. By replacing either the head or modifier of a noun
compound with a word referring to a synset that is either higher, lower, or at an equivalent
level (i.e., one that shares a superordinate or parent node) in the WordNet tree, we can
thus produce a new compound with constituent components that are more, less, or equally
specific.

For example, given the compound orange juice, we could replace orange with a more
abstract word (like fruit) to create a more abstract compound (like fruit juice). Alternatively,
we could replace orange with a more specific word (like clementine) to create a more specific
compound (like clementine juice). Finally, by finding a synset with a common superordinate
(like apple, which might share the parent fruit), we could create a compound that is equally
specific but distinct (like apple juice).

The Basic Level

In discussing the role that hierarchy-based changes could play in compound interpretability,
it is helpful to briefly mention the idea of a basic level, as introduced by Rosch et al. [37].
In that seminal work, Rosch argued that, in hierarchical taxonomies of basic objects, there
exists one level in the taxonomy, known as the basic level, for which “categories carry the
most information, possess the highest cue validity, and are, thus, the most di�erentiated
from one another”.

In simpler terms, the basic level includes those objects that are considered prototypical
of a certain class or category. They are the objects often listed by human judges when asked
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to name a “typical” version of that class of objects and, as such, usually represent the terms
that occur most often and with which judges are most familiar.

For example, given the category fruit, members of the basic level might include apple,
banana, and grape, but not pomegranate or guava. Note that these first three fruits are
commonly occurring and highly di�erentiated; if we move down any of their respective
subtrees, the objects became much less so.

Traveling down the apple subtree, for example, the next level might contain Gala apple
and Mackintosh apple. These two objects are much less commonly occurring and much less
di�erentiated than, say, apple and banana, or apple and grape. Similar observations can be
made for other superordinates, like tool, where the basic level might include hammer, saw,
and screwdriver ; and furniture, where the basic level might include table, lamp, and chair
[37].

At the same time, when traveling up the object hierarchy, the levels become more ab-
stract, and it becomes increasingly di�cult to capture those levels with concrete representa-
tions. Back to the fruit example: the parent trees could consist of food and drink, for which
any concrete representation would be inherently distanced from the abstract concept. Thus,
the basic level is alternatively defined as “the most abstract level at which it is possible to
have a relatively concrete image” [37].

Basic Levels in WordNet

The WordNet graph can be viewed as composing such an object hierarchy. Thus, when
considering modifications to noun compounds through deviations based on WordNet synsets,
it would not be surprising if the concept of the basic level came into play. In fact, the very
existence of such a level makes a potential hypothesis like “moving up the WordNet graph
makes a compound easier to interpret” problematic: depending on a compound’s starting
position in the object hierarchy vis-à-vis the basic level, deviations upward could leave it too
abstract, just as deviations downward could leave it too specific.

Taking the above into consideration, a reasonable hypothesis would be that deviations
towards the basic level lead to compounds that are more easily interpretable. Other rea-
sonable hypotheses could be presented as well. Unfortunately, none of these are testable in
practice. The idea of a basic level is mostly abstract and has not been extended to cover
WordNet. Thus, as of now, it is not possible to determine the basic level, which makes it
infeasible to assess any hypotheses that revolve around it.

As such, we present a simpler hypothesis that will likely fail to capture the nuance of the
peer generation process: that movements down the WordNet graph, which increase specificity
and, as a result, limit the creativity available to interpreters, make compounds more di�cult
to interpret. Note that in the basic level setting, we would expect this to be true some, but
not all of the time.
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Semantic Distance

Earlier, we demonstrated that the semantic distance between generated compounds and
their attested variants correlated with di�culty of interpretation. By extending this logic,
we would expect peer compounds that deviated more significantly from their root compound
to have labels that di�ered more significantly from the original.

For example, say we have a compound X Y, and can swap X with the modifier A that is
three synsets away or the modifier B that is just two synsets away. Under this reasoning,
we would expect the label of A Y to di�er more than B Y from that of X Y, given that A is
further away from the original modifier X.

In the case of the WordNet relations available at present, then, we can explicitly compare
the deviations of Nephew peers to those of Child peers, as the former will be definitively
further away than the latter from the root compound (i.e., Nephew peers will always be three
edges away in WordNet, while Child peers will be just a single hop away).

7.2 Hypotheses
The hypotheses in this section are simple and aim to capture the core motivations presented
in Section 7.1 above:

H1. Deviations that move upward in the WordNet graph should more frequently increase
ease of interpretability than those that move downward in the graph.

H2. Deviations that move a larger distance in WordNet should lead to larger deviations in
interpretability. Specifically, Nephew peers should exhibit larger deviations than Child
peers.

H3. Deviations enforced on a noun compound’s modifier should be more substantial than
deviations on a compound’s head. By ‘substantial’, we do not mean that these de-
viations should necessarily make the compound easier or more di�cult to interpret;
rather, that they should have a more easily observable e�ect. This is because changing
a compound’s head can dramatically change its overall meaning, whereas changing a
modifier will often leave the compound’s core entity unchanged. For example, given
the compound fruit fly, apple fly is closer in conception than, say, fruit bug, since the
core entity (‘fly’) is retained.

Each of these hypotheses was considered as we conducted our analysis, and each will be
addressed in the discussion below.

7.3 Data Generation
Next, we outline the method by which our initial set of 250 generated compounds were
mutated, or altered using predictable deviations based on WordNet synsets, to produce a set
of peer compounds.
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To start, we defined four di�erent WordNet relations that would be used when generating
peers from an initial WordNet synset. These relations are listed in Table 1 and outlined
visually in Figure 2 on Page 14. For completeness, they are: Child, Sibling, Nephew, and
Uncle. Note that the Uncle relation goes upward, while the Child and Nephew relations go
downward, and the Sibling relation stays on the same level of the WordNet graph.

For each noun compound from our initial round of experiments, we collected three distinct
judgments from Turkers. Based on the paraphrases provided by Turkers, for each judgment,
we were able to label the head and modifier of a compound with a specific WordNet synset.
As a result, a compound’s head and/or modifier could have been labeled with multiple
di�erent WordNet synsets across the three judgments submitted by Turkers; this multiplicity
of synsets would be indicative of the multiple di�erent senses in which the head and/or
modifier was used during interpretation.

Thus, for each compound, for both its head and modifier, for every sense in which they
were used, we generated every possible peer compound by iterating over the four pre-defined
WordNet relations and producing a new peer for each Child, Sibling, Nephew, and Uncle.
Specifically, for each synset collected as above, we iterated over its lemmas, as defined in
WordNet, discarding any lemmas that were proper nouns, acronyms, hyphenated, or exhib-
ited another unhelpful characteristic. Note that this method of data generation led to some
noun compounds having multiple peers for a given relation, and others having as few as zero.

For example, in the initial dataset, we included the generated compound country sugar.
Multiple Turkers provided paraphrases that led to country being assigned the synset coun-
try.n.4, and sugar, the synset sugar.n.1. By taking the Nephew relation from the modi-
fier country, we reached the synset village.n.2, which produced the peer compound village
sugar–note the increased specificity (from country to village) as we travel downwards in the
WordNet graph via the Nephew relation. Alternatively, by taking the Uncle relation from
the head sugar, we reached the synset spice.n.2, which produced the peer compound country
spice.

To provide a level of quality control, we only used as root compounds those in the initial
dataset with a clear majority-voted interpretability label (i.e., we excluded any compounds
for which each of the three judges assigned a di�erent interpretability label) and, in addition,
we only used synsets for judgments whose label corresponded to that of the majority-vote
winner.18

Recall that 219 compounds had a clear majority-voted interpretability label. For each
of those compounds, we attempted to generate one peer by mutating the head and one by
mutating the modifier, balancing the distribution of mutations across the dataset such that
an even number of peer compounds were based on each relation, to the extent possible.

In the end, this process produced 351 peer compounds, with their mutating relations
split along the lines of the values listed in Table 13. The final list of 351 peer compounds
generated by this process can be found in Section B.3 of the Appendix.

18For example, if a compound received two No di�culty judgments and one Minor di�culty judgment,
we would only use the synsets corresponding to the No di�culty judgments when generating its peers.
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Relation N

all

N

head

N

mod

Nephew 90 48 42
Uncle 92 46 46

Sibling 85 43 42
Child 84 42 42

Table 13: The number of peer compounds included for each WordNet relation type, where
N

head

indicates the number of compounds for which the head was mutated, and N

mod

, for
which the modifier was mutated.

7.4 Experiment Statistics
We provide a brief overview of the relevant experiment statistics in a manner similar to those
presented in Section 5.1.

This second round of experiments was conducted in the window from November 18, 2014
to November 29, 2014. As the total number of compounds increased from 250 in the initial
experiment to over 350, we allowed the batch size to increase to 100 compounds per batch.

Due to an experimental error, some batches mixed HITs pertaining to valid peer com-
pounds with others that were not included in the final dataset. This made it di�cult to
gauge the average time per judgment. However, based on the average time for batches in
which only valid peer compounds were included, we estimated that Turkers spent an average
of 33 seconds on each HIT, a value below that of the previous round of experiments, but still
in-line with our pre-experiment estimate.

Again, due to the aforementioned experimental error, the acceptance rate of submis-
sions was di�cult to compute exactly, but a similar estimate left us with an approximate
acceptance rate of 93.88%, a number very close to the previous round’s 93.75%.

Turker ‘Diversity’

As we produced 351 peer compounds and collected three distinct judgments per compound,
this made for 1,053 accepted HITs. These 1,053 HITs were submitted by a total of 99
di�erent Turkers. The average number of accepted submissions per Turker was 10.64, while
the median was 3. Again, there was a long tail of Turkers that submitted just a few HITs
(73.3% of Turkers submitted between 1 and 10 HITs), and while no Turker hit the 50-HIT
cap, two Turkers submitted exactly 49. These numbers are similar to those of the previous
round of experiments.

Breakdown of Submissions

Of the 1,053 approved HITs, which spanned 351 distinct compounds, 415 submissions (39.4%)
labeled a compound to be interpretable with No di�culty, 365 submissions (34.7%) labeled
a compound interpretable with Minor di�culty, and 273 submissions (25.9%) labeled a
compound Meaningless. Compared to the breakdown of submissions from the first round of
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experiments provided in Section 5.2, these percentages di�er by a raw margin of less than
2% for each interpretability label, a remarkably consistent result.

Majority-vote and unanimity breakdowns are also presented in Table 14. The majority-
vote breakdown is very similar to that of the previous round of experiments (results di�er by
at most an absolute margin of 2.4%), although the unanimity percentages are slightly lower
across-the-board.

Given that, for example, 38.4% of compounds received a majority-voted interpretability
label of No di�culty in the first round of experiments and 36.8% were deemed as such in
this second round, the consistency between experiments is indeed surprising. In fact, this
consistency could suggest that the values presented in Table 14 are reasonable estimates for
compound interpretability in general, not just in the context of this experiment.

Di�culty Num. Judgments Num. Majority Num. Unanimous
No di�culty 415 (39.4%) 129 (36.8%) 50 (14.2%)
Minor di�culty 365 (34.7%) 104 (29.6%) 16 (4.56%)
Meaningless 273 (25.9%) 73 (20.8%) 23 (6.55%)

Table 14: Initial results from the second round of Amazon Mechanical Turk experiments,
which consisted of 1,053 approved HITs spanning 351 distinct noun compounds, all of which
were ‘peers’ of the compounds used in the first round of experiments.

7.5 Analysis
In this section, we examine how the paraphrases submitted by Turkers (and the synsets to
which they were linked) matched up with those assigned to peer compounds through the peer
generation process, with the explicit goal of addressing the hypotheses listed in Section 7.2.

The Assumption of Predictability

A key assumption underlying the hypotheses from Section 7.2 was that WordNet similarity
would be an e�ective proxy for predicting how a user would interpret a given compound.
This is distinct from predicting the di�culty of interpretation.

To be specific, when we generated these peer compounds, we did so by taking a synset
(i.e., a sense) in which either the head or modifier of a compound had been interpreted and
finding a replacement synset nearby in the WordNet graph, using this new synset to form
a peer. Implicitly, then, this process assumed that when Turkers were presented with this
peer compound, they would be inclined to interpret the new head or modifier in the sense
represented by the WordNet synset used to generate it.

As will be clear from the analysis below, this assumption may have been invalid. In
particular, we found that predicted peer synsets were used in only a minority of judgments.
The implication is that Turkers were more likely to use some other synset corresponding to
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the peer compound’s new component than that which was predicted by the data generation
process.

The issue at hand is non-obvious, but can hopefully be illuminated with an example. In
our initial dataset, we included the generated compound body manager. Turkers generally
interpreted the head, manager, with the synset coach.n.1, defined as “someone in charge
of training an athlete or a team”. When generating peers, one such peer, body conditioner,
was based on the synset conditioner.n.2, defined as “a trainer of athletes” and connected to
coach.n.1 by the Child relation. However, when Turkers were presented with body condi-
tioner, in all three judgments, conditioner was interpreted with the synset conditioner.n.3,
defined as “a substance used in washing (clothing or hair) to make things softer”. While
we expected Turkers to interpret conditioner as some sort of trainer, they instead tended
interpreting it as a grooming product.

To put it in simple terms: while we assumed that the peers we generated would be
interpreted on the basis of the synsets from which they were produced, this was often not
the case. This phenomenon is complicating, yet interesting in its own right. Specifically, since
our goal was to evaluate how interpretability labels altered as compounds were mutated in
known ways via known WordNet relations, such an evaluation cannot be undertaken for those
compounds in which the predicted peer synset was not used by human judges. This limits
the investigation of any hypotheses based on known WordNet relations to the portion of the
dataset for which Turkers landed on synsets identified beforehand. However, it also opens
the door for another portion of analysis, that which focuses on how frequently Turkers landed
on the synsets identified beforehand as a function of the predicted relations. For example,
were peers generated by the Child relation more frequently in sync with the predicted
synsets than, say, peers generated by the Uncle relation? Or, alternatively: how often did
an unpredictable interpretation involve a concept from a higher level in the WordNet graph,
given that these higher levels house vaguer concepts?

In the sections below, we begin by discussing how the interpretability labels changed for
those peers interpreted as predicted beforehand. Afterwards, we analyze the dataset through
another lens, investigating the rate at which peers were judged in senses that deviated from
those predicted by WordNet.

Changes in Interpretability

To start, we took the raw peer compound dataset (consisting of three distinct human judg-
ments per peer) and annotated the head and modifier of each compound, for each judgment,
with a WordNet synset, using the process described in Section 6.1. This required over 1,500
manual annotations, but was considered necessary to maintain quality.

Next, the dataset was segmented into those judgments for which the annotated synset
matched the predicted synset decided upon during peer generation. Returning to the body
manager and body conditioner example from above, any judgments that interpreted con-
ditioner with the synset conditioner.n.2 would be accepted, while those that interpreted
it with any other synset would be discarded. In addition, only judgments with an inter-
pretability label that agreed with the peer’s majority-voted label were included, to mirror
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the filtering process we enforced during the peer generation process from Section 7.3.
For each remaining judgment, for each WordNet relation, and for peers that were gener-

ated by both deviations from the head and modifier, we computed the number of judgments
for which the human-provided interpretability label of a peer matched that of its root com-
pound (e.g., for judgments using the synset conditioner.n.2, how frequently did body condi-
tioner ’s interpretability label match that of body manager?). We also counted the number
of judgments for which the interpretability label was indicative of increased or decreased
di�culty, respectively, as measured by movements from No di�culty to Minor di�culty and
so forth.

Recall that, in the peer generation process, we used the first-sense heuristic to provide
synsets for Meaningless compounds. Thus, deviations in interpretability labels could jump
(in terms of becoming less di�cult) from Meaningless to No di�culty; however, measurable
improvements in di�culty could only go as high as increasing to Minor di�culty, since it was
not possible for compounds deemed Meaningless to yield interpretations that matched their
predicted WordNet synsets, given that these compounds were by definition not interpretable.
To account for this discrepancy, we also report the number of peer compounds that ended
up with a majority vote of Meaningless.

The results, for peers derived from deviating heads and modifiers respectively, are pre-
sented in Tables 15 and 16. In those tables, each cell contains a count of the number of peers
created from a given WordNet relation for which the interpretability label di�ered (or not)
from the original compound from which it was generated. The rows are divided into three
sets of rows: the top set of rows tracks the number of peers that preserved the interpretability
labels of their root compounds; the middle set, peers that became more di�cult to interpret;
and the bottom set, peers that became easier to interpret.

When parsing the results in Tables 15 and 16, recall that we included between 42 and
48 peers for every pair of WordNet relation and variant type (i.e., head or modifier). For
example, there were 42 peers generated by taking the Nephew mutation from a compound’s
modifier. In addition, note that the modifications that end in Meaningless judgments are
slightly inflated and should not be categorized in the same way as modifications ending in
No di�culty or Minor di�culty labels, as a compound labeled Meaningless did not yield
judgments using the predicted peer synset (as the judgments provided did not indicate any
synset); the figures are merely included for completeness.

While there are inferences to be drawn from Tables 15 and 16, the most important obser-
vation is that there is a clear lack of data. Due to the discrepancy between predicted synsets
and those used by human judges, along with the wide variety of WordNet relations that
were explored, we have but a handful of eligible judgments for each permutation of settings
(typically, around 10 peers per pair of WordNet relation and head or modifier variant). This
makes it very, very di�cult to draw firm conclusions and, in particular, to make definitive
conclusions on the hypotheses we outlined in Section 7.2. On this basis, we defer most of
the substantive analysis to the next section, where we turn this data sparsity into a strength
by dissecting the rates at which predicted synsets matched those used by human judges.

However, there are still some observations worth noting. For one, it was incredibly rare for
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Child Nephew Uncle Sibling
Stayed at None 6 5 5 3

Stayed at Minor 3 1 3 5
Stayed at Meaningless 1 1 2 1

None æ Minor 4 2 1 4
Minor æ Meaningless 4 5 3 2
None æ Meaningless 2 4 4 5

Meaningless æ Minor 0 0 0 0
Minor æ None 2 2 2 4

Meaningless æ None 0 0 0 0

Table 15: For peers based on mutations of the head, we tracked the rate at which inter-
pretability labels changed, with respect to the labels of the root compounds from which
they were generated. Each cell represents the number of peers that were given the resulting
interpretability label (determined by majority vote) conditioned on the root compound’s
interpretability label (again determined by majority vote).

Child Nephew Uncle Sibling
Stayed at None 4 5 5 5

Stayed at Minor 1 3 1 7
Stayed at Meaningless 0 2 1 3

None æ Minor 3 3 4 5
Minor æ Meaningless 6 5 4 5
None æ Meaningless 2 3 2 7

Meaningless æ Minor 1 0 0 0
Minor æ None 2 4 0 1

Meaningless æ None 0 1 2 0

Table 16: For peers based on mutations of the modifier, we tracked the rate at which
interpretability labels changed, with respect to the labels of the root compounds from which
they were generated.

peers generated from Meaningless compounds to yield interpretations that fit those predicted
at time of generation. This could speak to the inaccuracy of the first-sense heuristic (we
have little proof that the first sense, which was used to generate the peer, accurately reflects
a human judge’s ‘best guess’ interpretation) or to the Power Law-esque phenomenon we
have seen in the past: while it was common for compounds to go from Minor di�culty to No
di�culty, it was uncommon for compounds to jump from Meaningless to some other gradient
of ‘interpretable’. However, in the absence of additional information, the noise induced by
the first-sense heuristic provides a more acceptable explanation.
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In general, there were no obvious di�erences between those peers generated by head and
modifier manipulation, although this lack of di�erence likely speaks more to the sparsity of
the dataset than anything else. For peers generated from both head and modifier manipula-
tion of a No di�culty compound, it was relatively common to receive a No di�culty label;
at least, slightly more common than those that stayed at a Minor di�culty label. In both
cases, it was slightly more common for a (compound, peer) pair to go from No di�culty to
Minor di�culty than vice versa.

Given these observations, we find ourselves unable to draw definitive conclusions as to
the validity of the hypotheses presented in Section 7.2. While Nephew peers occasionally
exhibited greater deviation in interpretability than Child peers, there’s not enough data
to di�erentiate signal from noise. Similarly, while Child and Nephew peers became easier
to interpret at a higher rate than Uncle peers, the deviations are on the order of single
digits. Further, the similarities between the values reported in Tables 15 and 16 make it
di�cult to di�erentiate between the e�ects induced by deviating heads versus those induced
by deviating modifiers.

In this section, then, we established that WordNet deviations do not account for the
productivity of noun compounds in a straightforward manner. Next, we analyze this finding
in more detail by evaluating the degree to which productivity was captured by the peers
generated using each of the four WordNet relationships considered during their creation.

Changes in Synset Usage

As a corollary to the lack of data present in the previous section, there were a large number of
observations for which the synset corresponding to a peer judgment did not match up to the
synset predicted at time of generation. Next, we explore how these out-of-sync judgments
varied across the predicted WordNet relations.

The process by which relevant statistics were computed for these out-of-sync judgments
ran as follows: For every pair of peer compound and root compound from which it was
generated, we identified the synset used to produce the peer, as well as the predicted synset
for that peer. Returning to the body manager and body conditioner example, the relevant
synsets would be coach.n.1 and conditioner.n.2. The former (coach.n.1 ) is included as
it is the synset from body manager that was used to produce the peer, while the latter
(conditioner.n.2 ) is included as it is the peer’s predicted synset.

Next, we then filtered out any pair for which the root synset (e.g., coach.n.1 ) was used
in just one of the three judgments submitted by Turkers. We also filtered out any pairs for
which the peer had only one possible synset in WordNet, since this synset would be selected
by default given the first-sense heuristic and would thus bias our results towards those peers
for which there was only one available synset. In this way, the computed values, if anything,
underrepresent the rate at which predictions matched up with human judgments.

After this filtration step, we computed:

• The number of times (out of three judgments) that the target peer synset was used in
the interpretation provided by human judges.
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• Whether the target peer synset was the most commonly occurring synset.

• Whether the target peer synset occurred at all in the three judgments.

Note that, as opposed to in the previous section, we made no e�ort to filter based on
the interpretability labels of the judgments provided and instead restricted our view to the
synsets.

As a concrete example, consider the potential root compound fruit fly, and assume that
we received three judgments that were then best labeled with the modifier synsets fruit.n.1
(indicative of an organic, editable fruit), fruit.n.3 (indicative of the consequence of some
action, as in “the fruit of one’s labor”), and fruit.n.1 again. We could then use fruit.n.1 to
generate the peer compound orange fly, where orange was derived from the predicted synset
orange.n.1 (indicative of orange the fruit), which is close to fruit.n.1 in the WordNet graph.

When presenting human judges with this new compound, however, we might find that
their judgments are best represented with the synsets orange.n.2 (indicative of orange the
color, rather than the fruit), orange.n.2 again, and finally orange.n.1. In this case, we would
include the pair of fruit fly and orange fly in our analysis, as the root synset, fruit.n.1, was
included in two of the three human judgments. The most commonly-occurring synset in the
peer judgments, orange.n.2, occurred twice, and the predicted synset, orange.n.1, occurred
once. Thus, the final values for our three metrics, as computed on the pair of fruit fly and
orange fly, would be 1, False, and True, respectively.

The results derived from this process, for peers generated by deviating heads and modi-
fiers are presented in Tables 17 and 18, respectively.

Child Nephew Uncle Sibling
Mean predicted synset occurrences 0.82 0.72 0.89 1.12

Predicted synset most common (%) 29.63 28.12 34.62 36.00
Predicted synset never occurred (%) 66.67 68.75 61.54 48.00

Table 17: For peers based on mutations of the head, we report the rates at which synsets, as
determined by user-submitted paraphrases, were in and out of sync with those predicted by
WordNet. For each row, particularly large values are presented in bold, while particularly
small values are presented in italics.

Child Nephew Uncle Sibling
Mean predicted synset occurrences 0.50 0.89 0.77 0.80

Predicted synset most common (%) 20.83 28.57 27.27 33.33
Predicted synset never occurred (%) 79.19 57.14 63.64 53.33

Table 18: For peers based on mutations of the modifier, we report the rates at which synsets,
as determined by user-submitted paraphrases, were in and out of sync with those predicted
by WordNet.
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These tables paint a much clearer picture of the e�ect of WordNet relations on pre-
dictability of synsets. In particular, we make a few key observations:

• For peers generated by mutations of both the head and modifier, Sibling peers were
much more likely to have been interpreted in a way that aligned with the synsets
predicted during the data generation process. For example, the predicted synset was
the most frequently-occurring synset for 36.00% and 33.33% of the Sibling peers that
made it through the filtration step.

• Again for both mutations, Child and Nephew peers were, in general, the least in sync
with predicted synsets. For example, nearly 80% of the Child synsets were never
interpreted with the predicted synset for those peers generated by mutating a modifier.

• Prediction rates were generally similar between the peers generated by deviating heads
and those generated by mutating modifiers, although predictions were slightly more
accurate for those in the former category.

We can color these observations with a few examples. Namely, when looking at the second
observation, it is interesting to see how the synsets derived from user judgments deviated
from those predicted by WordNet relations. Often, these deviations arose due to the multiple
possible senses in which the new peer component could be interpreted. For example, our
initial dataset included the compound player industry. Turkers often interpreted player in
the sporting sense of the word–as in, a football player. This gave us the Child peer seed
industry, where seed was linked to the synset seeded player.n.1, defined as: “one of the
outstanding players in a tournament”. But when this compound was presented to Turkers,
they universally interpreted seed with the synset seed.n.1, defined as: “a small hard fruit”. In
this case, then, we have a peer compound (seed industry) for which the root (player industry)
was easily interpretable with a specific sense, and the peer, easily interpretable with a very
di�erent sense. While our methodology expected seed to be interpreted in the sense of a
seeded participant, Turkers instead saw it as the seed of a fruit. The body manager and body
conditioner example from above is a similar case.

What these examples demonstrate is that, while WordNet distance and semantic simi-
larity metrics may be useful when evaluating the interpretability of a compound relative to
attested variants, they’re not e�ective in predicting the precise way in which a compound
will be interpreted, especially vis-à-vis generated compounds. This is a testament to the
incredible productivity of noun compounds and the English language more generally: while
the idea of a ‘seeded player’ is, obviously, closely linked to the concept of a ‘player’, the
easiest way for humans to interpret the seed industry compound was to completely traverse
the WordNet graph and come up with a completely di�erent meaning of the word seed, which
embodied a completely di�erent semantic relationship to the head (industry).

In some cases, the divergence was a byproduct of WordNet’s over- or under-specificity.
We occasionally generated peers for which the predicted synsets were ultra-specific (like
quad.n.3, defined as: “a block of type without a raised letter; used for spacing between
words or sentences”). Indeed, it would be rare for human judges to tend toward these
synsets when interpreting the compounds, which made this a di�cult task from the start.

71



7.6 Conclusion
In this section, we generated a set of 250 peer compounds, which were constructed by
mutating noun compounds from our initial dataset through preset WordNet relations. For
each of these compounds, we collected three human judgments on their interpretability using
the same HIT format as in Section 4.3.

In analyzing the results of our experiments, we found that WordNet proximity was an
ine�ective means of predicting the way in which a given compound would be interpreted.
While this was not the hypotheses that we set out to validate, it is an interesting observation
nonetheless and truly speaks to the complexity of noun compounds. That deviating com-
pounds by following well-defined paths in the WordNet graph could lead to interpretations
completely unrelated to those of the origin synsets, yet still mutually agreeable to human
judges, is a fascinating discovery.

However, the conclusion is more nuanced than “WordNet proximity is a bad predictor
for the interpretation of the peer”. Rather, we found that it is di�cult to decipher when
peer relationships will be important, and how di�erences will emerge when mutating noun
compounds. Going back to the body manager to body conditioner example: it is true that
these peers appeared to be close in WordNet yet ended up with very di�erent interpreta-
tions. But it also holds true that we can find peers of body conditioner with very similar
interpretations. The peer hair conditioner, for example, would be a peer of body conditioner,
reached by mutating the modifier body, with (in all likelihood) the same interpretation for
conditioner.

In other words, then, the challenge is to discern which peers will be grouped together in
terms of similarity of interpretation. For every compound, there are many peers for which
the deviated component would be interpreted in a sense similar to that of the original; but
it is untrue that every such peer would fall under this category.

Predicting that two peers will be clustered (i.e., use the same interpretations for their
shared head or modifier) is not straightforward. In the context of the aforementioned ex-
ample, the goal would be to develop a theory as to why are the peers body manager and
body conditioner are dissimilar (in that manager and conditioner are not interpreted in the
senses corresponding to close WordNet synsets), yet the peers body conditioner and hair
conditioner are similar (in that body and hair would presumedly be interpreted in the senses
corresponding to close WordNet synsets). Predicting peer clusters is beyond the scope of
this study, but if anything, the results of this experiment demonstrate that the task is both
di�cult and fascinating.

8 Extending to Ternary Compounds
While noun compound research typically limits its scope to binary compounds, we choose
to extend our study to ternary compounds as well.

When discussing questions of interpretability, ternary compounds are particularly inter-
esting in that they themselves contain sub-compounds. Recall, for example, that the ternary
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compound olive oil bottle, parsed as [[olive oil] bottle], contains the sub-compound olive oil.19

Our study aimed to identify how the interpretability of sub-compounds, like olive oil, could
impact the interpretability of larger compounds of which they are a part, like olive oil bottle.

After completing the experiments outlined in the previous sections, we had access to 500
annotated compounds. This presented a unique opportunity to generate ternary compounds
based on these annotated binary compounds. Given that we had a source of truth for the
interpretability of the sub-compounds (human judgments from the HITs), we were able to
analyze, for the first time, how the interpretability of a sub-compound impacts a larger
compound’s overall interpretability.

Again, we used the AMT platform to collect data on the interpretability of ternary
compounds. Following the HIT template described in Section 8.2, we gathered 1,800 human
judgments, with the results presented and analyzed in Section 8.5.

8.1 Hypotheses
Given a new ternary compound of the form X Y Z, there are two possible ways to bracket
it: [[X Y] Z] and [X [Y Z]]. In other words, one can interpret X Y Z as a left- or right-
branching compound, respectively, based on the sub-compound that is preserved when defin-
ing its interpretation.

This multiplicity raises interesting questions about the interpretability of ternary com-
pounds. For one, it is often possible to produce two very di�erent interpretations for the
same compound based on the direction of branching. The compound club cover charge, for
example, could be interpreted as “the cover charge required to attend a night club”, or, just
as easily, “the cost of a golf club cover”. These two interpretations correspond to bracketing
the compound as right- or left-branching, respectively. As such, there’s some sense in which
ternary compounds allow for increased creativity or optionality during parsing, since human
judges can explore both left- and right-branching interpretations.

Note that, in generating our data, we produced ternary compounds X Y Z such that one
of X Y and Y Z was an attested compound, and the other, a generated compound with a
known interpretability label. Thus, each ternary compound considered can be viewed as a
mashup of two binary compounds, one of which a human judge would likely be familiar, and
the other, unfamiliar. For example, by combining the generated compound horse war and
the attested compound war criminal, we produced the ternary compound horse war criminal.
The exact procedure by which these ternary compounds were generated is described in more
detail in Section 8.3 below.

Given the format of the data and the assumption of increased creativity, we developed
the following hypotheses:

19The bracketing syntax used here was introduced in Section 2.1 on Page 8. In brief, when a ternary
compound X Y Z is bracketed as [[X Y] Z], the claim is that the interpretation corresponding to this
bracketing involves a grouping of the words X Y. In the olive oil bottle example, bracketing the compound
[[olive oil] bottle is in sync with the interpretation “a bottle of olive oil”, as the sub-compound olive oil

remains intact in this definition.
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H1. Human judges lean towards branching on a familiar compound. In particular, Turkers
will branch more often in the direction of the attested compound, such that they
provide a left-branching paraphrase for the compound X Y Z if X Y is attested and a
right-branching paraphrase if Y Z is attested.

H2. Human judges are able to interpret ternary compounds containing Meaningless gen-
erated sub-compounds, more often than not, due to the familiarity of the attested
sub-compound and the direction it provides in parsing a larger ternary compound. In
other words, when combining a Meaningless compound and an attested compound to
produce a ternary compound, the presence of the attested compound will aid human
judges as they develop valid interpretations.

H3. There will be a larger proportion of Minor di�culty ternary compounds than there
were binary compounds. This is partly motivated by the expanded set of potential in-
terpretations for ternary compounds, (made possible by the branching e�ect described
above, which allows for increased creativity and optionality during parsing) and partly
motivated by the increased entropy of ternary compounds (a function of the extra
word vis-à-vis binary compounds, which increases the chance that any two words in
the compound will pair together awkwardly).

H4. Ternary compounds will often share the interpretability label of the generated com-
pound that they contain. The labels will overlap more frequently when the judge has
chosen to branch along the path of the generated compound (i.e., when the judge has
chosen to keep the generated compound together in the provided paraphrase, they will
be more likely to have provided the same interpretability label than if they had kept
the attested compound together).

As in the previous rounds of experiments, our HIT template was designed to collect data
that would validate or invalidate these hypotheses.

8.2 Human Intelligence Task Format
We designed our HITs so as to collect su�cient data to validate or invalidate the hypotheses
listed in Section 8.1. In particular, for each ternary compound, we wanted to collect:

• An interpretability label on the scale of No di�culty, Minor di�culty, and Meaningless.

• A paraphrase that captured the Turker’s mental model for interpreting the compound.
Most importantly, this paraphrase had to demonstrate whether the Turker was inter-
preting the compound as left- or right-branching.

This second point is of particular importance. In the initial round of experiments, we
were collecting paraphrases to gain a better sense for how Turkers were interpreting the
compounds put before them. These paraphrases allowed us to assign WordNet synsets to
the head and modifier of each compound, detect the diversity of interpretations, and so forth.
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In this round of experiments, we simplified our template to focus on whether the com-
pound was left- or right-branching, and less on the Turker’s specific interpretation. This was
a design decision that made the experiment easier to follow for subjects, while retaining all
the necessary information for assessing the hypotheses listed in Section 8.1.

Determining the Direction of Branching

However, determining whether a compound was interpreted as left- or right-branching was
an unprecedented challenge. Historically, there’s been very little work on the task of deter-
mining the direction in which a compound should branch, and even less work on the task
of determining these directions based on human-provided paraphrases. The closest work is
from [21], in which the authors use algorithmic techniques to decide on whether a compound
should be considered left- or right-branching.

On the AMT platform, these determinations often involve more art than science. In
e�ect, the goal was to trick Turkers into revealing the manner in which they were mentally
branching during interpretation–without explicitly introducing the concept of branching, as
the mere mention of the idea would render the task overly di�cult. As such, we had to
develop a clever system for collecting branching decisions. This system had to be both (1)
simple enough for Turkers to understand, and (2) accurate enough for us to infer whether a
compound was left- or right-branching, based on input from a human judge.

In the end, our HIT template ran as follows: first, each HIT asked the Turker to decide
on an interpretability label for the ternary compound in a manner similar to that of the
previous round of experiments. Next, the Turker was asked to provide a paraphrase for the
compound. This paraphrase could take any format, with one restriction: assuming that the
ternary compound took the form X Y Z, the paraphrase was required to preserve either X
Y or Y Z. Later, the compound was deemed left-branching if the Turker preserved X Y, and
right-branching if the Turker preserved Y Z.

Returning to the club cover charge example, if a Turker submitted the paraphrase “the
cover charge required to attend a club”, we would deem the compound right-branching, as
cover charge was preserved in the interpretation. On the other hand, given the paraphrase
“the charge for a club cover”, we would deem the compound left-branching, as the para-
phrase preserved the sub-compound club cover. In particular, we would say that the latter
paraphrase branched with or preserved the sub-compound club cover. These two phrases will
be used interchangeably below.

While this technique is based on a heuristic, we found it to be quite accurate, especially
given that it required minimal explanation or understanding on the part of human judges.

It should be noted, however, that this system left us with paraphrases that were:

1. More di�cult to parse programmatically, as they no longer followed a known format,
as opposed to those collected in the previous rounds of experiments, which were based
on the relative clause or use of a preposition, as described in Section 4.2.

2. Less explicit. For example, a Turker could paraphrase a ternary compound of the form X
Y Z as “a Y Z for X”. This would provide us with the compound’s branching designation,
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but as the Turker was not required to provide a paraphrase for the sub-compound Y
Z, the exact interpretation of the overall compound was not always entirely clear.20

In evaluating these tradeo�s, we opted for a simpler experiment that more directly addressed
our hypotheses.

HIT submissions were rejected based on the criteria as in Section 4.3. Submissions were
also rejected if they failed to keep X Y or Y Z together in the paraphrase provided.

A sample HIT can be found in Section C.2 in the Appendix.

8.3 Data Generation
Recall that ternary compounds take the form X Y Z for three distinct nouns X, Y, and Z.
In our experiments, we wanted to make claims about how the interpretability of a ternary
compound X Y Z is impacted by the interpretability of its sub-compounds, X Y and Y Z.

As such, we generated our ternary compounds using the following procedure:

1. Pick a generated binary compound from the previous round of experiments (i.e., a
compound with a known interpretability label). Only binary compounds with a clearly
majority-voted interpretability label were used, i.e., those for which we had at least
two of the three judgments in agreement over the choice of interpretability label.

2. Decide whether the generated compound should compose the left or right two words of
the overall ternary compound. For example, assuming the final ternary compound took
the form X Y Z, we could use the generated compound as either the sub-compound X
Y, thus positioning it on the left, or the sub-compound Y Z, positioning it on the right.

3. If the generated compound was positioned on the left of the ternary compound, then
pick an attested compound of the form Y Z and merge the generated compound X Y
with the attested compound Y Z to create the ternary compound X Y Z. Otherwise,
pick an attested compound of the form X Y and continue as above.

The goal was to merge a generated and attested compound by finding a pair of compounds
with a shared head and modifier, or shared modifier and head. For example, the annotated
compound candy eye could be merged with the attested compound eye movement to create
the left-rooted compound candy eye movement. Alternatively, candy eye would be merged
with the attested compound sugar candy to create the right-rooted compound sugar candy
eye.

8.4 Experimental Design
The procedure described in Section 8.3 is parameterized on two arguments: the interpretabil-
ity label of the generated binary sub-compound, which could be either No di�culty, Minor

20While we toyed with the idea of requiring a second paraphrase for the sub-compound preserved by the
Turker, this would have complicated the experiment and distracted us from our primary goals.
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di�culty, or Meaningless, as defined in Section 2.4); and the position of the generated sub-
compound within the larger ternary compound (left or right). This leads to six distinct
combinations of parameters.

As our hypotheses in Section 8.1 concerned a variety of di�erent parameter combinations,
we choose to generate 100 ternary compounds for each combination, making for 600 total
ternary compounds.

As in the first round of experiments (Section 4), we collected three judgments per com-
pound, making for 1,800 total HITs. Each HIT followed the template outlined in Section 8.2.
Again, as in the experiments of Section 4, Turkers were limited to at most 100 submissions
each given the size of the dataset. The HITs were batched in groups of 100, also an increase
over the batching size of Section 4, and again due to the larger the dataset.

8.5 Results
We begin with a high-level overview of the experiments statistics in a manner similar to that
of Section 5.1. That is, we focus here on the number of participants, a breakdown of the
interpretability labels provided, and so forth. More thorough, conclusion-driven analysis will
be presented in Section 8.6 below.

The experiments were conducted over a seven day window from February 26, 2015 to
March 4, 2015. In collecting 1,800 total judgments (three for each of the 60 ternary com-
pounds), HITs were batched in groups of 100, making for 18 batches in total.

The acceptance rate for submissions was 81.06%, which represents a 12% drop from the
acceptance rates of the previous experiments (i.e., those conducted over binary compounds).
This lower acceptance rate was quite clearly a function of the increased complexity of the
task. In many cases, Turkers evidently failed to read the instructions closely and provided
paraphrases that merely consisted of two of the three words in the compound (e.g., submitting
just the words “fruit fly” to paraphrase the ternary compound orange fruit fly), or example
sentences containing the compound; in both of these scenarios, the HITs were rejected. As
in the previous rounds of experiments, collecting paraphrases from human judges allowed for
a degree of quality control.

Turker ‘Diversity’

In collecting 1,800 HITs, we approved submissions from 116 di�erent Turkers. On average,
15.52 HITs were accepted per Turker; the median number of accepted HITs was 7.

As in the previous experiments, there was a long tail of Turkers with a small number of
submissions, and a small group of Turkers who hit or came very close to the per-Turker limit
of 50 accepted HITs. Specifically, 56.9% of Turkers submitted fewer than 10 accepted HITs,
and 13 Turkers (11.2%) submitted between 45 and 50, with 8 (6.90%) hitting the cap of 50.
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Breakdown of Submissions

Our experiment included 600 distinct ternary compounds. As in the previous rounds of
experiments, we collected three judgments per compound, making for 1,800 total accepted
HITs. Of these 1,800 HITs, 692 submissions (38.4%) labeled a compound to be interpretable
with No di�culty, 620 submissions (34.4%) labeled a compound interpretable with Minor
di�culty, and 488 submissions (27.1%) labeled a compound Meaningless. These figures
are presented in Table 19. The percentages di�er by a raw margin of less than 3% when
compared to the breakdown of submissions from the first round of binary experiments (Sec-
tion 5.2), and a margin of 2% when compared to the submissions from the second round of
binary experiments (Section 7.4). Again, the rates at which judges attribute these labels are
remarkably consistent.

Majority-vote and unanimity breakdowns are also presented in Table 19. The majority-
vote breakdown is very similar to that of the first round of binary compound experiments,
di�ering by at most 2% in any of the three labels. However, the unanimity percentages are
lower across-the-board. It is interesting to note that the pattern of lowest-unanimity for
Minor di�culty compounds, which we saw in Section 5.2, persists in Table 19.

Di�culty Num. Judgments Num. Majority Num. Unanimous
No di�culty 692 (38.4%) 221 (36.8%) 75 (12.5%)
Minor di�culty 620 (34.4%) 170 (28.3%) 24 (4.00%)
Meaningless 488 (27.1%) 138 (23.0%) 41 (6.83%)

Table 19: Initial results from the Amazon Mechanical Turk experiments on ternary com-
pounds, which consisted of 1,800 approved HITs spanning 600 distinct noun compounds.

In relating the results of Table 19, and, in particular, the figures in that table vis-à-vis
those of the binary experiments from Section 5.2, to the hypotheses from Section 8.1, we
can see that the proportion of Minor di�culty judgments did not increase when expand-
ing to ternary compounds, contrary to H3. Between these two sets of experiments, the
overall percentage of Minor di�culty judgments dropped by 1.6%, although the percent-
age of majority- and unanimously-voted Minor di�culty compounds increased by 1.1% and
1.0% respectively. However, overall, these deviations are surprisingly small, and the rates
at which interpretability labels are assigned seems consistent across the binary and ternary
compound-based experiments.

8.6 Analysis
Next, we analyze the results of our experiments in greater detail. Of particular interest to us
(the experimenters) is the way in which Turkers chose to branch in their interpretations of the
ternary compounds and, specifically, the degree to which their choice of branch correlated
with the position of the attested sub-compound and/or the interpretability label of the
generated sub-compound, as determined in the first round of experiments.
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Branching Directions

Each ternary compound X Y Z implicitly contains two binary sub-compounds: X Y and Y Z.
When generating the ternary compounds used in our experiments, exactly one of X Y and Y
Z would be a generated binary compound from our first round of binary experiments, con-
structed according to the process described in Section 4.1; the other, an attested compound
from one of the existing binary datasets, as listed in Section 2.4.

In Section 8.1, and in H1 in particular, we claimed that human judges would tend to
branch along the path of the attested sub-compound, as keeping that sub-compound together
would make the overall ternary compound easier to interpret, given the increased familiarity
of the attested sub-compound vis-à-vis the generated sub-compound.

As an example, consider the ternary compound soft drink room, which consists of the
attested compound soft drink and the generated compound drink room. In this case, it is
more intuitive for a human judge to interpret the compound as [[soft drink] room] (e.g., “a
room in which one consumes soft drinks”) than as [soft [drink room]] (e.g., “a drink room
that is soft”), given that soft drink is a familiar, commonly-occurring binary compound.
By bracketing the compound as [[soft drink] room], the judge would be branching in the
direction of the attested sub-compound, rather than the generated.

With this established, we now assess the validity of hypothesis H1 from Section 8.1.
To start, we note that of the 1,800 total judgments received from Turkers, 1,312 of them
used a No di�culty or Minor di�culty label. In these cases, judges were required to submit
a paraphrase, which was used to determine the direction of branching (see Section 8.2 for
more). Of those 1,312 judgments for which a compound’s branch direction was determinable,
913 deemed the compound to be left-branching, and 399, right-branching. Alternatively put,
69.6% of judgments deemed a compound left-branching.21 This value is roughly in line with
the range of 64% to 67% proposed by Lauer [21], based on statistical analysis of a corpus of
noun compounds.

However, when the attested sub-compound was on the left, human judges branched left
in 568 judgments and right in just 101 judgments, making left-branching interpretations
over five times as popular. Alternatively, when the attested sub-compound was on the right,
human judges branched right in 298 and left in 345 judgments, an almost even split. These
figures are presented in Table 20.

From Table 20, the e�ect of the attested sub-compound in anchoring interpretations
is quite clear: whereas judges branched in the direction of a left-positioned attested sub-
compound nearly 85% of the time, they preserved right-positioned attested sub-compounds
only 53.7% of the time, a nearly even split. The di�erence between these two percentages is
statistically significant at a 99% confidence level using a standard Z-test for proportions.

In conclusion, then, we consider H1 to be valid in that human judges tended to preserve
attested sub-compounds when interpreting unfamiliar ternary compounds. This was iden-
tified by the higher rates at which judges branched left or right depending on whether the
attested sub-compound was positioned, similarly, on the left or right of the overall ternary

21When determining branch direction by a majority-vote, 73.7% of compounds were deemed left-branching.
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Group Left-Branching Right-Branching
All 913 (69.6%) 399 (30.4%)

Left attested 568 (84.9%) 101 (15.1%)
Right attested 345 (53.7%) 298 (46.3%)

Table 20: The direction in which human judges branched when paraphrasing ternary com-
pounds, with judgments segmented by the position of the attested sub-compound within
the larger ternary compound. Note that, for example, “Left attested” indicates that the at-
tested sub-compound was on the left. In general, human judges tended to preserve attested
sub-compounds at disproportionate rates; certain exceptional values are bolded for clarity.

compound. In other words: the position of the attested sub-compound played a hugely
influential role in determining the direction in which human judges tended to branch.

Branching as a Function of Interpretability Labels

We can further segment our judgments based on the interpretability labels provided by hu-
man judges. For each interpretability label (at least, for those with which a Turker was
required to submit a paraphrase, namely No di�culty and Minor di�culty), we computed
the same values as in the previous section–specifically, the breakdown between branching di-
rections with respect to the position of the attested sub-compound. The results are presented
Table 16.

Group Left-Branching Right-Branching

No di�culty
All 504 (72.8%) 188 (27.2%)

Left attested 321 (87.2%) 47 (12.8%)
Right attested 183 (56.5%) 141 (43.5%)

Minor di�culty
All 409 (66.0%) 211 (34.0%)

Left attested 247 (82.1%) 54 (17.9%)
Right attested 162 (50.8%) 157 (49.2%)

Figure 16: Branching directions for ternary compounds segmented by interpretability label,
position of the attested sub-compound, and direction of branching. Note that for Meaningless
judgments, no such paraphrase was provided, which made the branching direction impossible
to determine; hence, those judgments are omitted from consideration.

From Table 16, we can see that No di�culty judgments were more often those with a left-
branching interpretation (72.8% vs. 66.0% for Minor di�culty judgments). Naturally, this
increase carries over to the next two rows, which demonstrate that No di�culty judgments
with a left-positioned attested sub-compound were more frequently left-branching than those
for Minor di�culty judgments under the same conditions. The same observation can be made
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for ternary compounds with right-positioned attested sub-compounds.
The discrepancy could speak to the relative ease of interpretation for left-branching com-

pounds, given that they’re slightly more natural and naturally occurring, according to the
present study and that of Lauer [21]. Further, this strong preference for left-branching inter-
pretations is consistent with the general principles of English syntax. As such, it could be the
case that compounds which lend themselves to left-branching interpretations are generally
easier to interpret given that such interpretations are more natural and more syntactically
aligned with English syntax. Such a result would imply that a compound’s branching desig-
nation could act as an indicator of its regularity and, further, its interpretability.

Interpretability Overlap

We next evaluate the degree to which the interpretability label of a ternary compound
mirrored that of the generated sub-compound that it contained. Recall that for each of
the generated sub-compounds, we collected three human judgments using the HIT format
described in Section 4.2. Each judgment included an interpretability label, either No di�-
culty, Minor di�culty, or Meaningless. Given these three judgments, we could then assign
a ‘ground truth’ interpretability label to the judgment by taking the majority vote (or ac-
knowledge that the compound received three di�erent interpretability labels and thus had
no clear majority).

When generating ternary compounds, we exclusively used the generated binary sub-
compounds with a clear majority-voted interpretability label from the last round of experi-
ments, as described in Section 8.3. Thus, when comparing the label of a ternary compound
to that of the generated sub-compound it contains, we always had a ‘ground truth’ inter-
pretability label for that latter. For the ternary compound itself, we again took a majority
vote over the judgments submitted by Turkers and discarded those compounds for which a
clear majority did not exist.

Under these qualifications, we can then compare the interpretability labels of ternary
compounds to those of their generated sub-compounds. The exact results are presented in
Table 21. Most importantly, we found that ternary compounds agreed with the interpretabil-
ity labels of their generated sub-compounds 45.6% of the time. This 45.6% label agreement
rate is astoundingly high given the three-tiered approach to labeling. That figure in partic-
ular seems to support or even validate hypothesis H4 from Section 8.1, which claimed that
this agreement rate would indeed be non-negligible.

Table 21 contains four other rows. The ‘Left-attested’ and ‘Right-attested’ rows segment
compounds based on the position of the attested sub-compound within the larger ternary
compound. With these figures, we see that the position of the attested sub-compound played
a minimal role in encouraging agreement or disagreement with the generated sub-compound.

The next two rows, those labeled ‘Preserved attested’ and ‘Preserved generated’, segment
the ternary compounds based on whether the branching direction (as determined by a major-
ity vote) went along the path of the attested or generated sub-compound.22 In the soft drink

22Note that for these two rows, we could not include any compounds for which the generated sub-compound
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Group Agreement Disagreement
All 241 (45.6%) 288 (54.4%)

Left-attested 120 (44.9%) 147 (55.1%)
Right-attested 121 (46.2%) 141 (53.8%)

Preserved attested 106 (40.6%) 155 (59.4%)
Preserved generated 59 (53.6%) 51 (46.4%)

Table 21: The rates at which the interpretability labels of ternary compounds (determined
by majority vote) agreed with those of the generated binary sub-compounds they contained.
In this table, ternary compounds are segmented based on the position of their attested
sub-compound (rows 2 and 3), and then whether judges kept the attested or generated
sub-compounds together in their interpretations (rows 4 and 5).

room example: if Turkers had deemed this compound left-branching (keeping the attested
sub-compound soft drink together), it would be included in the ‘Preserved attested’ cate-
gory; otherwise, if they had deemed it right-branching (keeping the generated sub-compound
drink room together), it would be included in the ‘Preserved generated’ category.

These last two rows of Table 21 are of interest to us in evaluating the hypotheses of
Section 8.1, and H4 in particular, which claimed that interpretability labels would overlap
more frequently when judges had branched along the path of the generated sub-compound,
rather than the attested sub-compound. And, indeed, we see that interpretability labels
were in agreement with those of their generated sub-compounds 53.6% of the time when
branching with said generated sub-compounds versus just 40.6% of the time when branching
with the attested sub-compound. Again, H4 is validated by the results of Table 21.

In this section, then, we gained a better understanding of the e�ect that a sub-compound
could play on a larger ternary compound of which it is a part. In particular, we saw a re-
markably high agreement rate (45.6%) between the labels of generated sub-compounds and
those of their larger ternary compounds. In addition, when segmenting based on the branch-
ing direction determined by Turkers, interpretability label agreement rates were significantly
higher when Turkers branched in the direction such that kept the generated sub-compound
was preserved in their paraphrase.

The E�ect of Meaningless Sub-Compounds

In the hypotheses listed in Section 8.1, we included H2, which made the claim that ternary
compounds with Meaningless generated sub-compounds would often be interpretable, despite
the di�culty of interpretation of its component. For example, the ternary compound state
dinner o�cer is composed of the attested sub-compound state dinner and the generated sub-

had a Meaningless interpretability label. This is because, if the ternary compound also received a Meaningless

interpretability label, we would not be able to verify that judges had preserved the generated sub-compound,
since at most one paraphrase would have been provided. Analysis of Meaningless generated sub-compounds
is reserved for the next section, below.
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compound dinner o�cer. The compound dinner o�cer was deemed Meaningless by judges
in the first round of experiments. However, state dinner o�cer was deemed interpretable
with Minor di�culty in this round of experiments, as the judges unanimously branched
left, keeping state dinner together in their paraphrases. In a sense, the added context and
information in the ternary compound made it much easier to interpret.

In the last section, when observing the e�ect that branching played on the agreement
of interpretability labels for ternary compounds and their sub-compounds, we had to ignore
those ternary compounds based on generated sub-compounds with Meaningless labels. Now,
we exclusively look at the e�ect that Meaningless sub-compounds played on interpretability.

Of the 171 ternary compounds with both a clear majority-voted interpretability label and
a Meaningless generated sub-compound, only 68 (39.77%) of them were deemed Meaningless
by judges, with 42 (24.56%) deemed interpretable with No di�culty and 61 (35.67%) deemed
interpretable with Minor di�culty. In other words: in accordance with H4, more often than
not, compounds with a Meaningless sub-compound were nonetheless interpretable (although
typically with some di�culty given the prevalence of Minor di�culty judgments).

Of the 103 ternary compounds with a Meaningless root but an overall No di�culty or
Minor di�culty majority-voted interpretability label, 84 branched in the direction of the at-
tested compound. Thus, 81.6% of these compounds eschewed an interpretation based on the
generated sub-compound. This is the scenario described in our state dinner o�cer example,
where judges were unable to interpret dinner o�cer in our first round of experiments, but
were able to interpret this larger ternary compound by relying on the attested sub-compound
state dinner.

In comparison to ternary compounds based on No di�culty and Minor di�culty sub-
compounds, this proportion is highly inflated. In fact, between the various rates at which
judges preserved generated sub-compounds, there’s a clear trend: when the generated sub-
compound was interpretable with No di�culty, judges preserved it 42.5% of the time; when
interpretable with Minor di�culty, they preserved it just 33.9% of the time; and, taking
the complement of the above, when Meaningless, they preserved it 22.8% of the time. The
conclusion: when sub-compounds are di�cult to interpret, judges shy away from them; when
they’re easy, they’re more likely to be preserved.

These figures demonstrate both the flexibility of ternary compounds (i.e., that judges
could eschew sub-compounds that were di�cult to interpret in favor of more reasonable
mental groupings, namely by keeping attested sub-compounds together) and the e�ect that
sub-compounds play in enforcing certain interpretations. In evaluating our hypotheses, it is
clear that with larger compounds come greater freedom and creative license in interpreta-
tion, as Turkers were able to interpret compounds containing Meaningless sub-compounds
with relative ease. Future work could examine the nature of interpretability for even larger
compounds (say, length-4 or length-5). In those cases, the problem becomes even more in-
teresting, as larger compounds become awkward and di�cult to manage, creating a tension
between the vast realm of possible groupings and interpretations, and the unfamiliarity and
awkwardness of these larger structures.
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8.7 Conclusion
In this section, we devised and analyzed in experiment based on ternary compounds, or those
consisting of three separate nouns, like olive oil bottle. While previous research has mostly
been restricted to the analysis of binary compounds, we choose to examine the interpretabil-
ity of ternary compounds, with a particular focus on the e�ect that the interpretability of
binary sub-compounds could play on that of larger ternary compounds, of which they are a
part.

Our experiment, which was conducted using the AMT platform, collected 1,800 distinct
human judgments spanning 600 ternary compounds.

Before analyzing our results, we first presented a series of hypotheses in Section 8.1,
which were then evaluated throughout Sections 8.5 and 8.6.

In considering the hypotheses of Section 8.1, we came to a number of conclusions re-
garding the interpretability of ternary compounds, many of which were in line with our
intuition about human behavior. For example: when a ternary compound contained both
a sub-compound that was very di�cult to interpret and one that was not as challenging,
judges tended to preserve the latter during parsing. Furthermore, in general, judges tended
to preserve attested sub-compounds, regardless of whether they composed the two leftmost
or rightmost words in the ternary compound. In many cases, this inertial e�ect allowed
ternary compounds containing meaningless or nonsensical sub-compounds to themselves be
open to valid interpretations, as judges could split apart those meaningless sub-compounds
and fallback to preserving the attested sub-compounds with which they were likely familiar.

These conclusions speak to a theory of interpretation for ternary compounds in which
the sub-compounds that compose them play an exceptionally important role. Additionally,
this role appears to be non-linear in the sense that combining two compounds that are
somewhat di�cult to interpret does not appear to be a more productive method of generating
interpretable ternary compounds than, say, combining one compound that is very easy to
interpret and another that is very di�cult.

9 Discussion
In this thesis, we set out to develop a theory of noun compound interpretability. While noun
compound research has grown in scale and scope over the past few years, our e�orts focused
on the rarely asked questions of: “What makes a noun compound interpretable?” and, more
broadly, “What are the limits of noun compound interpretability and productivity?” Given
the innovative aspects of our experiments and the nature of our results, this thesis repre-
sents both a novel e�ort and a series of original contributions to the field of computational
linguistics.

In the preceding pages, we dissected the results of three separate rounds of experiments,
each of which was conducted on Amazon’s Mechanical Turk platform. Each of these ex-
periments was designed so as to include some degree of noun compound interpretation by
human judges (Turkers), typically in reference to noun compounds that were assumed to be
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unfamiliar or unusual.
At this juncture, we attempt to tie together the results of these three rounds of experiments–

which were discussed in Sections 6, 7, and 8, respectively–with the goal of forming a consistent
set of conclusions relating to the interpretability of noun compounds.

Rates of Interpretability

In H4 of Section 3, we hypothesized that most noun compounds would be interpretable
given the productivity and generativity of compounds as a linguistic structure. And indeed,
in each round of experiments, we found most noun compounds to be interpretable, be it with
ease or some degree of di�cult. Given that the compounds in our dataset were constructed
in a manner so as to make them as unusual as possible, this is a fascinating result, and one
that speaks to the productivity and diversity of noun compounds: even with high entropy
compounds, Turkers were generally able to form reasonable interpretations, as exemplified
by the paraphrases they composed. Furthermore, our experiments demonstrated not only a
high rate of interpretability, but also a surprising level of co-agreement among judges (see
Section 5.1). In other words, not only were most compounds interpretable, but judges were
generally able to agree on the degree of di�culty involved in their interpretation.

As a related result, we found that in each round of experiments, the set of compounds
involved was judged to be interpretable at nearly identical rates. In other words, whether
they were generated, peer, or ternary compounds, the proportions of compounds judged
to be easily interpretable, interpretable with di�culty, and uninterpretable were very much
aligned across datasets. Given the manner in which our datasets were constructed, the
consistency of these interpretability rates suggests that they could in fact represent very
general proportions. That is, these proportions could be capturing, to some degree, the
rates at which all nouns compounds are interpretable, an observation that extends beyond
those included in our datasets.

In summary, not only did we find that most compounds were interpretable, but also,
that judges were generally able to agree on a compound’s interpretability. Further, the
proportions of compounds deemed to be easily interpretable, interpretable with di�culty,
and uninterpretable were remarkably consistent across multiple experiments and datasets,
suggesting that there may be a natural split between compounds in general.

The Interdependence of Paraphrasing and Interpretation

In addition to collecting raw interpretability labels, we also required judges to submit a
paraphrase for each compound following a specific format based on use of prepositions or
the relative clause. In H5 of Section 3, we hypothesized that paraphrases corresponding
to compounds deemed more di�cult to interpret would be more complex, as evidenced by
a greater diversity of tokens and other quantifiable metrics, with the broader implication
being that the complexity of a paraphrase could be indicative of the di�culty involved in its
composition.

Throughout this thesis, we have used these paraphrases to augment our analysis. Their
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usefulness has led us to conclude that the acts of paraphrasing and interpretation are in-
trinsically linked: in e�ect, paraphrases reveal information about the di�culty of their com-
position, which in turn reveals information about the di�culty associated with interpreting
a given compound. In other words, a compound’s di�culty of interpretation and the com-
plexity of its paraphrases are not independent.

This connection was evidenced on multiple occasions and for multiple definitions of ‘com-
plexity’, extending beyond the characterization based on token diversity introduced in H5.

First, in Section 6.2, where we demonstrated that di�culty of interpretation correlated
with the length of a paraphrase and the diversity of its tokens, a shallow definition of com-
plexity that corresponded to our initial formulation from Section 3.

Second, in Section 6.5, where the topics and clusters computed over structural representa-
tions of paraphrases were linked to di�culty of interpretation, representing a more advanced
definition of complexity.

And third, in Section 6.6, where vector-space representations of paraphrase dependencies
were used to train a machine learning classifier to predict a compound’s interpretability, an
arguably deeper take on complexity. In each case, the paraphrases associated with a given
compound were linked to that compound’s interpretability, be it on a macro or micro scale,
and using the actual content of the paraphrases or deeper structural representations.

The existence of a link between interpretation and paraphrasing is very much in tune
with our intuition. However, to demonstrate the existence of this link experimentally, and on
so many levels, from content- to structure-based approaches, is not only a novel contribution,
but one that certainly merits further exploration.

A Comparison-Based Model of Interpretation

Perhaps the most significant analysis in this thesis focused on the usefulness of drawing
comparisons between compounds that had been produced algorithmically (with which judges
were assumed to be unfamiliar) and attested compounds found in existing noun compound
datasets (with which judges were assumed to be familiar).

These comparisons relied on measures of semantic and lexical similarity, especially those
based on WordNet [10], and were typically drawn between a generated compound (like cotton
cup) and the attested compounds with which it shared a common term (like cotton farmer,
which shares the modifier cotton, or co�ee cup, which shares the head cup), known as attested
variants.

In H3 of Section 3, we hypothesized that these comparisons would be useful in gauging
noun compound interpretability given (1) the application of semantic similarity measures in
prior research and (2) the assumed role that comparisons to familiar compounds could play
in interpreting new ones. And, indeed, throughout our analysis, we found these comparisons
to be powerful and e�ective indicators of interpretability. In fact, these comparisons were
typically more reliable than any of the other techniques explored.

We point to two areas in which these comparisons were used extensively and e�ectively:
first, in demonstrating a correlation between semantic similarity (of a generated compound
and its attested variants) and di�culty of interpretation (Section 6.3); and second, in the
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training of a machine learning classifier using pairwise compound comparisons as its unit
of account, with feature vectors computed using a variety of semantic and lexical similarity
metrics (Section 6.6).

In both of cases, comparisons to attested compounds were identified as a crucial indicator
of compound interpretability. One might be tempted to claim, then, that compounds proven
to be more semantically similar to their attested variants are easier to interpret. However,
the conclusion is not that simple. And, in fact, our analysis leads to a more nuanced observa-
tion: that comparisons to a select group of variants are more e�ective. In other words, while
comparisons to a wide range of attested variants can be useful, identifying the variants of
maximal importance can yield better results. For example, in training our machine learning
classifier, we found that clustering attested variants, identifying the cluster of maximal simi-
larity, and subsequently excluding any variants outside of that cluster improved performance
substantially. This process was akin to cutting out irrelevant comparisons and, instead, lim-
iting ourselves to a more relevant group of attested variants. Similarly, in assessing the
correlation between semantic similarity and interpretability, we found that trends were most
pronounced when we employed a ‘best vector’ approach, i.e., discarded every attested variant
besides that which was maximally similar.

These two examples demonstrate that, while broad comparisons to a large pool of attested
compounds can be useful, it is in fact better to identify the most relevant subset of attested
variants and compare to this subset instead. Typically, the noun compounds in which a
given word might be used can be classified or segmented based on senses in which that word
is used and the semantic relationships in which it may be involved.

For example, compounds based on the pattern (ú cup) could be divided into those that
use cup as a liquid container and those that use cup as a trophy, and then into those that
include a modifier representing a liquid, or a material, or whatnot. When considering the
interpretability of a new, unfamiliar compound, our results seem to demonstrate the value
of identifying those attested compounds that employ the sense or semantic relationship that
is most similar to those employed in this unfamiliar compound, rather than comparing to
every possible usage of its constituent components. Returning to the cup example: when
developing a valid interpretation for cotton cup, it may be most useful to identify the subset of
(ú cup) compounds that use cup in a similar sense, rather than draw on every such compound
in existence.

For further evidence of the importance of identifying a ‘most relevant’ subset of attested
variants, we look to the experiments conducted on peer compounds (Section 7). We found
that, while we had assumed that peer compounds would be judged in a sense predicted
beforehand based on WordNet distances, instead, judges tended to move away from our
predicted senses.

Recall that our peer compounds are themselves (unattested) variants. For example,
the generated compound player industry produced the peer seed industry, where seed was
meant to reference the idea of a seeded player in a tournament; in reality, however, Turkers
interpreted seed as the seed of a fruit or vegetable. The di�culty, then, was that we were
unable to predict peers’ interpretability labels because we simply could not identify whether
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a peer was truly a peer–in the sense of lending itself to a similar interpretation. In some
cases, we generated variants (like seed industry) that were interpreted in ways that were
worlds apart from that of their root compound (in this case, player industry). We failed,
in other words, to identify whether two peers could be reasonably grouped together in the
same cluster of variants, which rendered many of our hypotheses untestable. In e�ect, we
had generated peers that went beyond the boundaries of a set of similarly interpretable
compounds. The power of these variant clusters had a huge bearing on our results.

Composing Comparisons

Stepping back, it is important to note that the very usefulness of drawing comparisons
between generated and attested compounds could be seen as evidence in favor of a composi-
tional approach to noun compound interpretability, similar to that expressed by the Principle
of Compositionality introduced in Section 2.4.

In particular, one might argue, based on our results, for a theory of interpretation in
which a human judge, when presented with an unfamiliar compound, first identifies the set
of possible senses in which its constituent components are used in familiar compounds, and
then finds a mutually agreeable combination of senses for the two words to form a reasonable
interpretation.

For example, in interpreting cotton cup, a judge could rely on drawing comparisons to
the compounds cotton shirt–in which cotton is used as a material of which the head, shirt, is
composed–and paper cup–in which cup is used as a container, constructed out of the material
referenced in the modifier, paper–to interpret the compound as a “cup made of cotton”.

Under this model, the interpretation of a noun compound would involve not only the
composition of the meanings associated with its member terms, but rather, of the ways in
which these member terms are used in the wild (i.e., in attested variants). This could be seen
as an extension of the Principle of Compositionality in which the candidate set of senses and
semantic relationships considered for a given word are guided by inferences and comparisons
to familiar variants, a theory that is simple, compelling, and evidenced, to an extent.

Beyond the Binary

Beyond our analysis of binary compounds, we ran an experiment to explore the interpretabil-
ity of ternary compounds, with a particular focus on the degree to which the interpretability
of a sub-compound a�ects that of a larger parent compound (Section 8). Given that com-
pound research has traditionally focused on binary compounds exclusively, we feel that our
use of ternary compounds represents another significant contribution to the field, especially
given the burden of developing innovative forms of data collection, for which there was no
precedent, as described in Section 8.2.

In H2 of Section 8.1, we proposed that some ternary noun compounds containing Mean-
ingless binary sub-compounds would nonetheless be interpretable. In validating this hy-
pothesis, our analysis demonstrated that the interpretability of larger noun compounds,
and ternary compounds in particular, is an entirely non-linear phenomenon. For example,
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a ternary compound composed of two sub-compounds that are themselves considered to
be relatively easy to interpret could, in fact, prove more di�cult to interpret than a com-
pound composed of one very easily interpretable and one meaningless binary sub-compound.
This phenomenon relies on the ability to ‘branch’ when interpreting a ternary compound.
That is, when parsing a ternary compound of the form X Y Z, one can either preserve the
sub-compound X Y or the sub-compound Y Z. The very existence of this choice allows for
a greater degree of freedom and creates a dominating e�ect in which the maximal inter-
pretability of any sub-compound is more important than, say, the average interpretability of
all sub-compounds involved.

In generating our dataset, we formed each ternary compound by combining a familiar
(attested) and unfamiliar (generated) binary compound, as described in Section 8.3. Given
this construction, we hypothesized in H1 of Section 8.1 that in interpreting ternary com-
pounds, judges would generally preserve the attested sub-compounds with which they were
familiar, and in H4, that when preserving a generated sub-compound, they would likely
provide the overall ternary compound with an interpretability similar or identical to that of
the generated sub-compound.

In our analysis, we found both of these hypotheses to be validated, as human judges
tended to preserve attested sub-compounds when interpreting larger ternary compounds.
In the event that a judge instead preserved a generated sub-compound, they were more
likely to label the ternary compound in agreement with the interpretability label of that
generated sub-compound. Interestingly, generated sub-compounds were preserved more fre-
quently when they were easy to interpret or, at the very least, interpretable with some
di�culty (based on the interpretability labels provided in the initial round of experiments
on binary compounds).

These observations can be seen as evidence of an anchoring phenomenon in the interpre-
tation of ternary compounds: in e�ect, judges tended towards the sub-compounds with which
they were presumedly most familiar, preferring simpler interpretations to those that demand
elaborate explanation, a result reminiscent of Occam’s Razor. Even when Turkers preserved
an unfamiliar generated sub-compound, it was often the case that this sub-compound had
been deemed easy to interpret or interpretable with some di�cult. And although we would
not be able to prove such a claim without further vetting of the attested sub-compounds, it
may be the case that some of these situations involved generated sub-compounds were more
familiar to human judges than the attested sub-compounds.

In conclusion, our analysis of ternary compounds suggests that compound interpretation
is a non-linear process, not only in terms of ease of interpretation, but also in the manner
in which interpretations are constructed. For example, based on the above, we could posit
that developing an interpretation for X Y Z is more of a question of “Which of X Y and Y Z
is easier to interpret” than, say, “Which of X Y and Y Z is easier to interpret given Z and X”.
Simply put, the interpretability of a ternary compound is more a function of the maximal
interpretability of its sub-compounds than anything else. This claim itself is interesting in
that it very much views ternary compound interpretation as a function of sub-compounds,
rather than individual words, a view that we hold to be well-evidenced in its correctness.
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Towards a More Comprehensive Understanding of Interpretability

In this section, we tied together the various pieces of analysis introduced throughout this
thesis, with the goal of developing a number of conclusions as to the interpretability of noun
compounds. The theory we have presented above speaks to the diversity and productivity of
compounds as a linguistic structure, but does not portray them as a construct beyond our
comprehension.

In particular, compounds appear to be intimately linked to those that share common
terms, and comparisons between a given compound–especially one that is considered un-
familiar or unusual–and its attested variants can go a long way towards determining its
interpretability. The fact that these comparisons were useful is itself evidence as to the
importance of semantic and lexical similarity in noun compound interpretation, given that
similarity-based metrics laid the foundation upon which these comparisons were drawn.

Further, the very interpretation of compounds was found to be intrinsically linked to the
act of paraphrasing, as paraphrases frequently leaked information as to the di�culty involved
in their composition. Just as comparisons to attested variants were useful in evaluating a
compound’s interpretability, so too was the manner in which it was paraphrased by human
judges. In theory, then, a compound’s paraphrases could act as a proxy for its interpretability
label.

The conclusions scattered throughout this thesis extend beyond these closing observations
and are almost certainly connected in non-obvious ways. Perhaps this connective tissue
will be illuminated in the future as we continue to improve on our understanding of noun
compound interpretability. But for now, to summarize compounds with a single thesis
statement would be to fly in the face of all that make them great.

10 Conclusion
In this thesis, we explored the question of what makes a noun compound interpretable.
Through a series of experiments conducted on Amazon’s Mechanical Turk platform, we
collected human judgments on the interpretability of a set of algorithmically-generated binary
and ternary compounds, and used this original dataset to test a series of hypotheses in a
scientifically rigorous manner.

Our results, as discussed in Section 9, demonstrate that the interpretation of unfamiliar
noun compounds is an act that relies on drawing comparisons to familiar, attested com-
pounds. This process can be modeled using measures of semantic and lexical similarity,
particularly those based on WordNet [10]. Further, we showed that the acts of interpre-
tation and paraphrasing are intrinsically linked, and that the interpretation of larger com-
pounds (ternary compounds, in particular) lends itself to a non-linear formulation in which
the maximal interpretability of any sub-compound is a key factor.

However, beyond these conclusions, each of which represents an original contribution to
the field of computational linguistics and linguistics more generally, this thesis contained
several other innovations, mostly related to the algorithmic construction of noun compounds
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as well as the scientific collection and analysis of interpretability judgments. The peer con-
struction process outlined in Section 7.3 and the ternary branch-designation scheme devised
in Section 8.2 exemplify these contributions well.

While our results are promising and led us to a number of satisfying and interesting
conclusions, this thesis paved the way for a great deal of future work. In particular, run-
ning similar experiments on a much larger dataset (think: thousands or even millions of
compounds, rather than hundreds) would be wise, especially for training a machine learning
classifier (Section 6.6). Luckily, the data generation process introduced in Section 4.1 is
su�ciently simple, allowing for the painless construction of massive datasets, which could
be used for future experimentation.

Additionally, in Section 9, we raised the issue of identifying the most relevant cluster
of peer compounds for a given generated compound, highlighting its importance. While
our analysis in Section 6.6 did make use of unsupervised graph clustering algorithms to
determine a set of maximally relevant peers, our approach was relatively untested and very
few alternatives were considered. As such, this task deserves further consideration.

Our exploration of ternary compounds (Section 8) was itself a novel endeavor, as much of
the existing research on noun compounds has been restricted in scope to binary compounds.
It would be of great value for researchers to carry out similar experiments over sets of
larger compounds (say, length-4 or length-5). It is our belief that as compounds grow in
size, they face a tradeo� between the increased space of possible interpretations (given the
branching permutations available to judges) and the unwieldy nature of their composition
(as massive compounds are often awkward). While ternary compounds in general merit
further exploration, the question of compound interpretability as a function of size is one of
particular interest to these authors.

Further, as discussed in Section 9, paraphrases and interpretability labels exhibited a
surprisingly strong connection, which we have described as an intrinsic link. This result
is particularly relevant to existing noun compound research. Much of the prior work on
compounds has focused on the act of paraphrasing [27]. Developing more complex mod-
els through which to draw inferences as to the interpretability of a compound based on its
paraphrases could prove useful to those academics focused on paraphrase generation. For
example, in training an automated paraphrase generator, researchers may be able to im-
prove performance in practice by ignoring those noun compounds that are not genuinely
interpretable by human judges; in that case, a paraphrase complexity-based model could be
used to discern the interpretable from the uninterpretable. While this is but one example,
it nonetheless demonstrates the existence of a substantial set of unanswered questions with
regards to noun compound interpretation and paraphrasing.

As such, our hope is that the results presented in this thesis will inspire researchers
to re-examine the question of noun compound interpretability. While noun compounds
research has come under the spotlight recently, the questions explored in this paper had
been largely ignored before publication. And as demonstrated above, these questions not
only merit exploration in their own right, but further, answering them can help us develop
a more comprehensive understanding of noun compounds in general. Such a theory would
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extend beyond the determination of a compound’s interpretability; rather, it would have very
general implications, even a�ecting the tasks on which researchers are already so focused,
like the development of semantic classification taxonomies and the automatic generation of
paraphrases.
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A Source Code & Data
The relevant source code used to analyze the datasets gathered from Amazon Mechanical
Turk is publicly available as a git repository hosted on the Bitbucket platform. Within that
repo, much of the code of interest is contained in a series of IPython notebooks, which can
be found in the ./src/analysis directory.

The raw data collected from the AMT platform as well as the synset annotations (as
described in Section 6.1) will be made available upon request.

B Experiments on Binary Compounds
B.1 Binary Dataset
The initial round of experiments on binary compounds consisted of collecting three judgments
for each of a set of 250 compounds, which were generated as per the process outlined in
Section 4.1. The exact compounds interpreted by human judges were as follows:

1. pressure dispute

2. government bars

3. bronze charge

4. pet members

5. bank function

6. string victim

7. account consultant

8. world policy

9. drink room

10. government eye

11. power analysis

12. wastebasket attempts

13. air zone

14. starvation shock

15. post field

16. country sugar

17. sugar measure

18. daisy baby

19. pork wall

20. decision development

21. bus function

22. novelty employees

23. concrete colonies

24. summer dispute

25. party cab

26. review identity

27. vacuum range

28. wax area

29. pole donor

30. future o�cer

31. citizen teams

32. peanut folk

33. machine actor

34. chocolate burn

35. paper attempts

36. desert hours

37. beer fair

38. bacon sauce

39. mining donor

40. birth disease

41. training arena

42. research expression

43. exhibition dish

44. ship members

45. sea lake

46. control o�ce

47. pet limb

48. mountain utensils

49. rice eye

50. life zone

51. draft food

52. product step
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53. job advance

54. sea machine

55. water book

56. chain concession

57. cigarette helmet

58. business party

59. nomination survey

60. care party

61. air lodge

62. daisy deaths

63. student pressure

64. golf purpose

65. top group

66. sports creations

67. city members

68. tax doctor

69. phantom nation

70. automobile dune

71. pet lock

72. city dispute

73. canine oil

74. surface period

75. extension friends

76. subject decision

77. accident dispute

78. house structure

79. beard alcohol

80. siege door

81. future actor

82. peer version

83. pet problems

84. neighborhood cube

85. farmer research

86. machine core

87. margin o�ce

88. testtube height

89. career practice

90. enemy signals

91. dinner o�cer

92. draft plant

93. drug orders

94. acting fair

95. marriage lane

96. nut engineer

97. college committee

98. student paper

99. wastebasket inventions

100. plum deaths

101. college limb

102. castle decision

103. apple alcohol

104. steam soldier

105. iron area

106. cathedral performance

107. student pains

108. motor time

109. city engineer

110. home jar

111. horse war

112. government power

113. voice creations

114. coal supplies

115. policy limb

116. history requests

117. water control

118. jungle range

119. neighborhood lake

120. starvation problems

121. water cure

122. bull signals

123. pet cake

124. citizen activities

125. petrol addict

126. beehive machine

127. exercise disease

128. cathedral administration

129. hotel model

130. cigarette pains

131. bear helmet

132. retirement practice

133. blanket months

134. growth lakes

135. ground manager

136. body instrument

137. resource revenue

138. part subject
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139. input jacket

140. domain army

141. waste application

142. assistance assembly

143. hand food

144. company glass

145. law attack

146. adventure invasion

147. faculty machine

148. wind administration

149. back number

150. handlebar assets

151. jungle paper

152. frog ring

153. interest man

154. air work

155. child church

156. charity case

157. heat height

158. desert prayers

159. suspense attack

160. dualist service

161. search speed

162. teaching friends

163. deficiency committee

164. country machine

165. salmon datum

166. moth force

167. operating o�cial

168. home creations

169. heart members

170. surface colonies

171. community stock

172. terry arrangement

173. love colonies

174. player industry

175. soya o�ce

176. body manager

177. enterprise product

178. door control

179. security arrangement

180. oil ring

181. part decision

182. headquarters protocol

183. cotton order

184. lightning measure

185. siphon letter

186. video example

187. exhibition competition

188. sports bomb

189. hermit committee

190. family analysis

191. lightning country

192. deficiency control

193. vapor item

194. child fish

195. computer work

196. assistance base

197. enemy cure

198. cigarette attack

199. trust money

200. government statue

201. horse structure

202. language inventions

203. discharge control

204. disaster bread

205. abbey assembly

206. mother butter

207. candy eye

208. sports price

209. factory lecture

210. college weather

211. hydrogen bomb

212. mother requests

213. nose money

214. language construction

215. hand charge

216. flu machine

217. organ area

218. flounder magazine

219. disease imports

220. picture procedure

221. jungle force

222. food firm

223. sugar bars

224. gardening tool
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225. teaching church

226. job paper

227. engineering treaty

228. snow sugar

229. bath centre

230. aerospace project

231. garden study

232. accident burn

233. home song

234. government structure

235. citizen helmet

236. charity report

237. child limb

238. lounge provision

239. party soup

240. vegetable rash

241. fitness experience

242. extension magazine

243. faculty remedy

244. enemy prayers

245. picture shape

246. holiday manager

247. faculty lake

248. sap folk

249. fatigue country

250. loan approach

B.2 Sample HIT: Binary Compounds
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B.3 Peer Dataset
The second round of experiments on binary compounds consisted of collecting three judg-
ments for each of a set of 250 peer compounds, which were generated as per the process
outlined in Section 7.3. Note that each peer compound will share either a head or a modifier
with one of the binary compounds listed in Section B.1 above.

The exact peer compounds interpreted by human judges were as follows:

1. meteor manager

2. part call

3. business product

4. career last

5. enemy input

6. eye money

7. bear sailor

8. phantom league

9. lightning collection

10. grease area

11. school committee

12. culture tool

13. court bars

14. role assembly

15. oil necklace

16. spectator actor

17. settlement machine

18. fitness step

19. hotel simulation

20. video sample

21. court statue

22. government can

23. cycling creations

24. drink o�set

25. palladium bomb

26. water prescription

27. giant party

28. food giant

29. child bird

30. privatisation shock

31. winery lecture

32. love gown

33. fair competition

34. accident infection

35. strategy limb

36. factory o�er

37. auditor pressure

38. exhibition tournament

39. brush range

40. post campus

41. beehive press

42. neighborhood pond

43. flight remedy

44. drink firm

45. fiber application

46. rainforest force

47. surface relay

48. duty party

49. circuit prayers

50. air center

51. care interest

52. court power

53. string target

54. research tra�c

55. sinking colonies

56. screen control

57. major paper

58. college branch

59. top world

60. party truck

61. sports valuation

62. interest author

63. garden credentials

64. country shovel

65. trust cash

66. world docket

67. bu�er assets

68. testtube gauge

69. picture condition

70. farmer probe

71. floor colonies
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72. bank report

73. plantation study

74. assistance garrison

75. moth grip

76. beer form

77. retirement misconduct

78. motor hour

79. record example

80. review sunshine

81. services practice

82. spirits fair

83. derivative control

84. father requests

85. drug word

86. jungle plot

87. set disease

88. cow signals

89. enemy inquiry

90. birth breakdown

91. size control

92. growth branch

93. government span

94. authority analysis

95. stick helmet

96. picture tower

97. child leg

98. payroll revenue

99. system signals

100. family correction

101. wind set

102. church structure

103. payroll arrangement

104. peer letter

105. outlet protocol

106. chip function

107. prosecution speed

108. blanket date

109. propane supplies

110. lounge stockpile

111. control spa

112. faculty tablet

113. fetus ring

114. horse separation

115. hermit force

116. greyhound problems

117. urchin fish

118. ownership survey

119. polarisation analysis

120. gardening bar

121. player cooperative

122. sect glass

123. period o�cer

124. summer division

125. poster war

126. margin headquarters

127. policy bill

128. date alcohol

129. rainforest paper

130. infant church

131. government term

132. marriage channel

133. rainfall administration

134. yesterday number

135. resource gain

136. wafer eye

137. ground executive

138. city controversy

139. peanut scheme

140. computer behavior

141. discharge development

142. system core

143. pork screen

144. breakup disease

145. production dish

146. base cure

147. greyhound cake

148. honey measure

149. jungle sheet

150. water interest

151. decision reversal

152. hand juice

153. cotton pass

154. city participant

155. veto development

156. pet position

157. shrine performance
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158. dropout committee

159. signing construction

160. company consultant

161. freshwater book

162. stretch friends

163. charity estimate

164. folk machine

165. cathedral executive

166. fall burn

167. signing inventions

168. press time

169. handlebar deficit

170. faculty sorter

171. town engineer

172. photograph shape

173. assistance recording

174. adolescent limb

175. air organization

176. nomination scan

177. escape control

178. ginger folk

179. back benefit

180. defence structure

181. power study

182. chenille victim

183. credit o�ce

184. technology friends

185. starvation breakdown

186. relation version

187. water album

188. dualist facility

189. realty money

190. waste habit

191. heart sister

192. body conditioner

193. high group

194. training court

195. interference o�cial

196. pressure explanation

197. chocolate infection

198. tool donor

199. country salt

200. organ pit

201. sea surface

202. tomorrow actor

203. ship tribesman

204. nationalist teams

205. canine helmet

206. aluminium area

207. teaching mortuary

208. castle saving

209. coal increase

210. daisy boy

211. jute order

212. ownership base

213. stage lake

214. photography price

215. party puree

216. iron property

217. due man

218. city specialist

219. neck sauce

220. golf target

221. jet measure

222. hand thinner

223. butterfly force

224. strength o�ce

225. company system

226. devil nation

227. extension relation

228. shortage committee

229. community part

230. sugar ornament

231. winter dispute

232. petroleum addict

233. seed industry

234. dog oil

235. art procedure

236. straw height

237. frog bracelet

238. wax stadium

239. citizen section

240. horse line

241. flagship members

242. enterprise clothing

243. relationship members
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244. student disaster

245. poppy baby

246. child dormitory

247. freshness experience

248. company stock

249. canine fat

250. celebration cab

251. carbohydrate ring

252. bank commission

253. reserve dispute

254. bacon salt

255. operating prosecutor

256. search length

257. machine dancer

258. index food

259. rice contractor

260. siege fence

261. student hiatus

262. language pornography

263. aerospace regimen

264. voter activities

265. engineering insurance

266. court model

267. pet cookie

268. business funeral

269. defense door

270. nut programmer

271. account counselor

272. bank utensils

273. cover arena

274. mountain steel

275. starvation innocence

276. tank centre

277. package machine

278. petrol junkie

279. enterprise invasion

280. comfort months

281. deficiency model

282. deficiency panel

283. hydrogen release

284. cement colonies

285. pony structure

286. citizen migration

287. draft poison

288. thigh room

289. pole supporter

290. pass project

291. teaching repeater

292. exercise collapse

293. mother tale

294. language representation

295. environment prayers

296. vacuum zone

297. accident division

298. counter work

299. session soup

300. machine bull

301. future comic

302. bolt country

303. door regulator

304. civilian helmet

305. bread burn

306. signing creations

307. puncture dispute

308. tailpipe letter

309. exhibition boat

310. apple elixir

311. acting presentation

312. security measure

313. sugar people

314. bus commission

315. washing paper

316. house shelter

317. citizen sailor

318. grower research

319. duct instrument

320. preparation practice

321. seafood wall

322. jungle outfit

323. town members

324. right charge

325. job magazine

326. chain franchise

327. relation policy

328. cathedral exposure

329. space engineer
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330. concrete outpost

331. part machine

332. round purpose

333. medication orders

334. government control

335. charity engagement

336. bay provision

337. communication fair

338. home layer

339. parasite service

340. religion case

341. brokerage function

342. future procurator

343. bath lodge

344. voice sum

345. lesson church

346. survey expression

347. soil manager

348. lightning resistance

349. environment sugar

350. biotechnology treaty

351. disaster jumble

C Experiments on Ternary Compounds
C.1 Ternary Dataset
The experiments on ternary compounds were carried out over a set of 600 compounds,
generated as per the process outlined in Section 8.3. The exact compounds interpreted by
human judges were as follows:

1. surface period face

2. disease imports furniture

3. apple alcohol poisoning

4. neighborhood lake area

5. advertising account con-
sultant

6. dawn air zone

7. domain army spokesman

8. tree top group

9. moth force reduction

10. computer business party

11. hotel model introduction

12. fatigue country house

13. future actor entrance

14. company glass eye

15. concrete desert prayers

16. stone city members

17. margin o�ce develop-
ment

18. government power semi-
conductor

19. trout nose money

20. citizen helmet law

21. bath centre bed

22. warrior castle decision

23. software engineering
treaty

24. job advance guard

25. tourist growth lakes

26. motorcycle accident burn

27. year marriage lane

28. government hand food

29. dollar bull signals

30. hermit committee report

31. family house structure

32. disaster bread crumb

33. shareholder pressure dis-
pute

34. mother butter knife

35. lightning country debt

36. port city members

37. margin o�ce desk

38. hydrogen bomb explosion

39. party cab driver

40. discharge control law

41. signatory country sugar
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42. assistance assembly
worker

43. hermit committee deci-
sion

44. enterprise product divi-
sion

45. solvency margin o�ce

46. car exhibition dish

47. steam iron area

48. soya o�ce complex

49. child church bus

50. winter sports creations

51. jungle range control

52. line extension magazine

53. mining donor list

54. soul food firm

55. fishing ground manager

56. post field day

57. day exercise disease

58. discharge control product

59. pole donor list

60. job advance word

61. drug research expression

62. applicant country ma-
chine

63. interest man marker

64. exhibition competition
law

65. playing surface period

66. summer heat height

67. city government power

68. management control of-
fice

69. frog ring worm

70. steel blanket months

71. deficiency control o�cial

72. lightning country hide-
away

73. food firm note

74. retirement practice squad

75. part subject deletion

76. domain army personnel

77. herb garden study

78. sightseeing bus function

79. soya o�ce sta�

80. box top group

81. rice eye level

82. door control o�cer

83. heat height limit

84. animal fatigue country

85. country sugar content

86. cigarette helmet law

87. aerospace project man-
ager

88. budget draft food

89. charity case law

90. college sports price

91. student power analysis

92. pole donor fatigue

93. leg exercise disease

94. wax area map

95. search speed trap

96. extension magazine sub-
scription

97. laptop part subject

98. blood bath centre

99. security blanket months

100. candy eye color

101. food assistance base

102. waste application genera-
tion

103. aircraft accident dispute

104. bath water control

105. career practice facility

106. drinking water control

107. furniture factory lecture

108. hand food system

109. dawn air lodge

110. state hand charge

111. draft plant project

112. family home jar

113. party hand charge

114. machine core micropro-
cessor

115. student body instrument

116. dualist service enterprise

117. machine core lad

118. hydrogen bomb expert

119. water surface colonies

120. cash assistance base
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121. state assistance assembly

122. top group conflict

123. bath water cure

124. gas future o�cer

125. emergency assistance as-
sembly

126. volume growth lakes

127. music career practice

128. college committee chair-
manship

129. refugee child church

130. computer work contract

131. strip search speed

132. water control policy

133. soybean oil ring

134. phantom nation mode

135. canine oil product

136. week extension magazine

137. acting fair o�cial

138. student paper cup

139. development body instru-
ment

140. review identity theft

141. family picture procedure

142. retirement practice test

143. factory lecture series

144. decision development
work

145. airport lounge provision

146. government pressure dis-
pute

147. disease imports shot

148. resource revenue collec-
tion

149. pet cake shop

150. siege door knocker

151. year paper attempts

152. air pressure dispute

153. student paper trail

154. testtube height restric-
tion

155. nomination paper at-
tempts

156. mother butter texture

157. power analysis group

158. water surface period

159. search speed skating

160. language construction
phase

161. gambling machine actor

162. velvet string victim

163. moth force structure

164. sugar factory lecture

165. banking world policy

166. retirement home jar

167. deficiency committee Re-
publican

168. review identity paper

169. divorce paper attempts

170. hand food poisoning

171. post field o�cer

172. draft food assistance

173. candidate city engineer

174. van factory lecture

175. exercise disease germ

176. filename part decision

177. donor organ area

178. student pressure tactic

179. oil ring worm

180. door control department

181. labour government bars

182. highway assistance base

183. air disaster bread

184. telecommunication pol-
icy limb

185. disaster bread pudding

186. family analysis firm

187. labour party cab

188. sports price signal

189. sea machine damage

190. assistance base closing

191. dinner o�cer corps

192. soft drink room

193. budget picture shape

194. diamond mining donor

195. dualist service worker

196. starvation shock value
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197. boating accident dispute

198. ton ship members

199. surgeon fatigue country

200. playo� picture procedure

201. sports body manager

202. construction job advance

203. canine oil deal

204. candy cigarette helmet

205. budget pork wall

206. drink room temperature

207. wage growth lakes

208. birth mother requests

209. storm wind administra-
tion

210. aerospace project finance

211. accident burn unit

212. auto part subject

213. donor country machine

214. iodine deficiency control

215. post field trial

216. crime family analysis

217. snack food firm

218. cocoa exhibition compe-
tition

219. manufacture computer
work

220. domain army man

221. pork wall curvature

222. beehive machine damage

223. birth mother butter

224. peanut folk architecture

225. rice eye opener

226. chocolate burn victim

227. brewery beer fair

228. jungle paper price

229. merchant bank function

230. government power analy-
sis

231. dualist service network

232. government decision de-
velopment

233. playing surface colonies

234. computer language con-
struction

235. summit country sugar

236. policy limb function

237. party government struc-
ture

238. research body instrument

239. farmyard waste applica-
tion

240. mining donor heart

241. award dinner o�cer

242. government bank func-
tion

243. union family analysis

244. farmer research contract

245. hour siege door

246. cruise ship members

247. poker player industry

248. vehicle part decision

249. cotton order backlog

250. draft plant variety

251. charity report language

252. dawn air work

253. engineering treaty negoti-
ation

254. tablespoon sugar bars

255. jungle paper plate

256. fruit drink room

257. cathedral administration
chief

258. down air work

259. chain concession speech

260. nut engineer joke

261. oil interest man

262. engineering student pres-
sure

263. gasoline margin o�ce

264. book review identity

265. company glass product

266. state government bars

267. accident burn victim

268. candy business party

269. sham trust money

270. part decision table

271. fishing pole donor

272. plastic chain concession

273. acting fair play

274. brick home jar
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275. world policy wonk

276. extension magazine rack

277. enemy cure rate

278. daisy baby formula

279. health research expres-
sion

280. heat height restriction

281. health care party

282. future o�cer corps

283. troop home jar

284. party hand food

285. army post field

286. charity case discount

287. testtube height advan-
tage

288. cathedral administration
building

289. security arrangement fee

290. player industry excutives

291. immigrant child limb

292. core job advance

293. budget draft plant

294. deficiency committee ap-
proval

295. lightning country butter

296. jungle force reduction

297. bear helmet law

298. liver disease imports

299. television domain army

300. committee decision devel-
opment

301. chain concession contract

302. donor government bars

303. motion picture procedure

304. marketing job paper

305. party machine actor

306. college limb function

307. family dinner o�cer

308. investment account con-
sultant

309. jury fatigue country

310. wage control o�ce

311. cathedral performance
measure

312. pole donor conference

313. sham marriage lane

314. hill country sugar

315. counseling student pres-
sure

316. fence post field

317. horse starvation shock

318. horse war criminal

319. pole donor community

320. month extension maga-
zine

321. sports price increase

322. food firm decision

323. handlebar assets sale

324. research community
stock

325. steam soldier ant

326. protectionist pressure
dispute

327. hotel model car

328. decision development
trend

329. poster child church

330. pet cake flour

331. insurance world policy

332. oil future o�cer

333. report language inven-
tions

334. mining donor organ

335. trust money maker

336. iron area study

337. purse string victim

338. draft plant owner

339. organ area study

340. beard alcohol abuse

341. horse starvation prob-
lems

342. peasant family analysis

343. artichoke heart members

344. beard alcohol use

345. operator fatigue country

346. fairground machine core

347. day siege door

348. disaster bread knife

349. chocolate burn unit

350. air work place
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351. enforcement resource rev-
enue

352. assistance assembly plant

353. troop home creations

354. foster child limb

355. daisy baby brother

356. refugee policy limb

357. job advance booking

358. salmon datum centre

359. pitching hand food

360. foot sea machine

361. puppet government
power

362. deficiency disease im-
ports

363. peasant party soup

364. training exercise disease

365. land security arrange-
ment

366. minority neighborhood
cube

367. child care party

368. sea machine operator

369. killer disease imports

370. country machine dryer

371. draft food supplies

372. motor time value

373. college sports creations

374. pipeline company glass

375. oil future actor

376. assistance base price

377. writing career practice

378. port city dispute

379. draft food business

380. engineering treaty re-
striction

381. gold mining donor

382. training arena show

383. air work report

384. surplus water book

385. deficiency control factor

386. degree heat height

387. customs post field

388. induction motor time

389. donor heart members

390. foster child fish

391. sap folk doctor

392. peanut folk doctor

393. morning paper attempts

394. water book sale

395. candy eye surgery

396. financing resource rev-
enue

397. world policy matters

398. preadmission review
identity

399. part subject area

400. water book industry

401. retirement hotel model

402. charity dinner o�cer

403. candy eye opener

404. birth disease manage-
ment

405. body heat height

406. beer fair play

407. jungle force structure

408. soccer body manager

409. apple alcohol industry

410. payroll job advance

411. sensitivity training arena

412. future home jar

413. enterprise product port-
folio

414. business college weather

415. drugstore chain conces-
sion

416. government power boat

417. business college limb

418. moth force level

419. back part decision

420. minority child fish

421. supermarket chain con-
cession

422. minority student paper

423. line extension friends

424. tablespoons sugar mea-
sure

425. daisy baby bottle

426. contract extension
friends

427. beard alcohol problem

110



428. fatigue country sensibil-
ity

429. business party activity

430. salmon datum element

431. truck part decision

432. foot mountain utensils

433. country sugar import

434. toilet training arena

435. selling pressure dispute

436. tourist city dispute

437. replacement part subject

438. motion picture shape

439. missile part decision

440. water control product

441. diesel motor time

442. faculty machine transla-
tion

443. hog farmer research

444. body instrument noise

445. identity paper attempts

446. player industry publica-
tion

447. factory lecture hall

448. air work method

449. state dinner o�cer

450. capital city engineer

451. care party government

452. blanket months order

453. beehive machine operator

454. minute video example

455. factory lecture circuit

456. teaching church elder

457. copy machine core

458. surplus water cure

459. adventure invasion force

460. input jacket pocket

461. utilization review iden-
tity

462. city engineer joke

463. college weather damage

464. resource revenue estimate

465. motor time visitor

466. family analysis team

467. carb air lodge

468. tinfoil blanket months

469. nomination survey report

470. dozen horse structure

471. hair care party

472. system engineering treaty

473. farmer research engineer

474. beard alcohol stain

475. product growth lakes

476. dozen horse war

477. government assistance
assembly

478. government body instru-
ment

479. report language construc-
tion

480. string victim name

481. child fish pond

482. minority neighborhood
lake

483. quality part subject

484. contract extension maga-
zine

485. power analysis branch

486. wind administration of-
fice

487. nose money broker

488. exercise disease manage-
ment

489. nomination survey com-
mittee

490. party soup can

491. care party plan

492. family pet cake

493. church teaching friends

494. trust money cost

495. chain concession stand

496. rice eye candy

497. forest resource revenue

498. country machine transla-
tion

499. back number plate

500. community stock selling

501. computer work practices

502. country house structure

503. member government
statue
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504. language construction
crane

505. business college commit-
tee

506. wax area study

507. soya o�ce construction

508. gardening tool price

509. string victim state

510. child fish farm

511. control o�ce employee

512. sap folk architecture

513. review identity document

514. degree water book

515. immigrant community
stock

516. terry arrangement fee

517. freak accident burn

518. township enterprise prod-
uct

519. marketing job advance

520. deficiency control mecha-
nism

521. fatigue country surround-
ing

522. extension magazine
group

523. student pressure group

524. book exhibition dish

525. fleet headquarters proto-
col

526. pork wall panel

527. cell growth lakes

528. string victim right

529. top group activity

530. manufacturing job ad-
vance

531. lifesaving drug orders

532. food chain concession

533. core mountain utensils

534. wind administration head

535. castle decision table

536. birth disease prevention

537. pig iron area

538. resource revenue bond

539. coalition party cab

540. energy input jacket

541. drink room demand

542. jungle range version

543. waste application fee

544. faculty lake area

545. candy eye shape

546. job paper maker

547. hurricane wind adminis-
tration

548. cancer drug orders

549. beer fair o�cial

550. child church school

551. ball player industry

552. college weather model

553. refugee child fish

554. business party victory

555. blood sugar measure

556. family pet problems

557. input jacket potato

558. weapon factory lecture

559. garden study participant

560. organ area director

561. ground manager report

562. team bus function

563. faculty machine tool

564. machine actor entrance

565. career practice time

566. siege door frame

567. engineering student pa-
per

568. cottage door control

569. domain army doctor

570. heat height advantage

571. daisy baby anchovy

572. quarterback job paper

573. water cure rate

574. exhibition dish owner

575. iron area map

576. party nomination survey

577. horse war o�ce

578. body manager report

579. grain farmer research

580. starvation shock absorber

581. control o�ce friendships

582. community stock futures
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583. watchdog body manager

584. iodine deficiency commit-
tee

585. party cab ride

586. export interest man

587. lawmaking body instru-
ment

588. exercise disease preven-
tion

589. cathedral performance
appraisal

590. drug chain concession

591. processing factory lecture

592. child limb function

593. college weather scientist

594. research trust money

595. cotton order imbalance

596. automobile part subject

597. college committee report

598. job paper producer

599. kidney disease imports

600. gas future actor

C.2 Sample HIT: Ternary Compounds
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