
A Generalized Algorithm for Flow Table Optimization

Charles Marsh

with David Walker (Advisor)

Department of Computer Science

Princeton University

{crmarsh, dpw}@cs.princeton.edu

Abstract

Network switches are both expensive and heterogeneous. The first property has pushed

researchers to find ways to minimize or optimize the flow tables that store information in

switches, producing solutions like those of Liu[10] and Meiners[18]. However, the second

property (i.e., the diversity of switch hardware used in practice) has forced programmers

to focus on the minute details of specific switches and, in some cases, rendered the algo-

rithms developed by researchers far less useful and even inapplicable. In this paper, we

present an attempt to create a series of highly general algorithms for flow table optimization

which are parameterized on user-provided hardware specifications. These algorithms allow

programmers to implement and optimize policies on network switches regardless of: the

number of tables available in each switch; the number of fields in each table; the type of

pattern-matching performed on each field; and the widths of the fields involved.

1 Introduction

Networking

In the most basic sense, a network is a set of switches, connected to one another at specific

ports. Switches operate by taking in packets, observing these packets’ header fields (e.g., source

IP address, source MAC address), and matching such fields against patterns (or predicates)

stored in the switches’ flow tables. Some action is then performed depending on the predicate

1

matched. The canonical actions are: forward the packet to another switch in the network (Fwd)

and drop the packet from the network (Drop).

A {predicate, action} pair is referred to as a rule; a collection of rules is referred to as a

policy or rule table. Rules can operate over four types of predicates:

1. Exact: In this case, each predicate is of the form {0, 1}n (e.g., 1011, 1010).

2. Ternary: In this case, each predicate is of the form {0, 1, ∗}n, where ∗ represents a “don’t

care” bit (e.g., 1*10 covers both 1010 and 1110).

3. Prefix: In this case, each predicate is of the form {0, 1}n−k∗k (e.g., 101* covers both 1011

and 1010).

4. Range: In this case, each predicate is of the form [i, j], which matches every binary

predicate whose integer representation falls between i and j (e.g., [3,5] covers 3, 4, and 5,

which correspond to 011, 100, and 101, respectively).

Table 1: A side-by-side comparison
Range Exact Prefix Ternary

[0,2] {00,01,10} {0*,10} {01,*0}

To make things clearer, consider the policy outlined in Table 2, which acts as a white-list,

dropping all rules that do not match the source and destination IP addresses specified by the

top two rules (rules are checked in priority order from the top down; a packet can match just

one rule).

Table 2: A sample policy on two fields
Source IP Destination IP

11* 11* Fwd

00* 001 Fwd

*** *** Drop

Software Defined Networking

Within each switch, the control plane handles the implementation of a given policy, while the

data plane performs the actual packet processing. In the case of Table 2, then, for each packet

that enters the switch, the data plane goes down the list of rules and executes the action listed

2

in a given row if and only if both the source and destination IP addresses satisfy the predicates

in that row.

Software Defined Networking (SDN) is an abstraction that aims to strip away the control

plane from individual network switches and instead allow programmers to implement policies at

a high level by communicating with a single network controller. Rather than communicate with

each individual switch, SDN lets programmers install packet-handling rules over a distributed

set of switches while avoiding low-level details [7]. OpenFlow, in turn, is a protocol for specifying

and implementing policies within the SDN paradigm [14].

Figure 1: Traditional networking

Control Plane

Data Plane

Control Plane

Data Plane

Control Plane

Data Plane

Control Plane

Data Plane

Figure 2: SDN

Controller

Data Plane Data Plane

Data Plane

SDN is an extremely promising abstraction and its adoption has grown within industry [19].

However, many of today’s controller platforms (OpenFlow included) still force programmers to

focus on gritty, low-level implementation details, rendering their solutions both non-modular and

tied to specific hardware. The canonical example of such non-modular behavior is OpenFlow’s

handling of policy composition (i.e., adding both policy A and policy B to a single switch).

Instead of merely specifying said policies, the programmer must implement them in a precise

order and assign seemingly arbitrary priorities; failing to do so leads to unexpected behavior.

Thus, recent efforts, such as the development of the Frenetic language [4], have aimed to provide

programmers with higher-level tools to work with SDN.

Network Hardware: Variety

The variety (inconsistency, even) of networking hardware used in industry further exacerbates

the problem of low-level policy management. More specifically, different chipsets provided by

different hardware manufacturers may demand completely different values for such parameters

as: number of tables in a chip; number of fields in a table; and type of predicate matching

3

performed in each table (e.g., ternary, exact).

For example:

1. The Broadcom Trident switch, which is considered “representative of 10 Gigabet Ethernet

switches”, uses two tables, one which performs exact match lookup on two fields (VLAN

ID and destination MAC), and another which performs ternary matching [21].

2. The Cisco Nexus 5000 switch, which contains multiple tables that perform either prefix-

based or ternary matching on a single or multiple fields [2].

This forces the programmer to deal with different hardware architectures depending on the

chipset in-use, creating an unnecessary burden.

Network Hardware: Performance

To make matters worse, switch hardware is costly, and the power consumption generated by

such devices can be prohibitively high [3]. Thus, the memory capacities of each chip on a

switch can be quite low in practice. This is especially true for chips that operate on ternary or

prefix-based rules which, in most cases, use Ternary Content Addressable Memories (TCAMs)

to perform O(1) matching on multiple fields [10]. With that in mind, it would be ideal to

implement a given policy with as few rules as possible. That is, if we could implement the same

network behavior with fewer rules, such a minimized set would always be preferred, as it would

require both less space and less power. This is the flow table minimization problem.

But the flow table minimization problem is complicated, again, by the varied nature of

switch hardware (as seen in the Broadcom vs. Cisco example), as programmers must worry

about the number of fields and types of predicates used in each table, tying their solutions to

the hardware involved.

Literature Review

Research on flow table minimization has focused on three approaches [24]:

1. Range Encoding: Range encoding maps a set of ranges to a “prefix-friendly” domain,

such as in the solution of Meiners[16], before converting from range to prefix (many poli-

cies, such as firewalls, are specified by ranges initially). In the current paper, we avoid such

4

approaches, as they require pre-processing of packets to map their fields to new domains;

this imposes an additional requirement on switch hardware [24].

2. Hardware Improvement: Self-explanatory. Although generally not considered in this

paper, we structure our approaches so as to avoid imposing extra burdens or requirements

on switch hardware; indeed, the purpose of our algorithm is to be as accommodating as

possible to existing hardware.

3. Classifier Compression: This is the approach we adopt, which is to find more effi-

cient, compact representations of policies. Recently, this approach has been developed

by Liu, Torng, and Meiners[15]. There have also been efforts by Wei[24] and McGeer[13]

to map TCAM policies to the field of Boolean logic and employ logic optimization algo-

rithms. However, such techniques are avoided in this paper, as they too require packet

pre-processing.

Goals

The question posed by this paper is as follows: can we develop a general, parameterized algo-

rithm which allows programmers to specify characteristics of a switch, as well as a policy to

implement, and receive, in return, a rule set which matches the desired characteristics? And

further, given the memory constraints of network chipsets, can we optimize such policies based

on the types of predicates involved?

The solution we present allows programmers to ignore hardware formatting and predicate

types while achieving a high compression ratio. Indeed, in some cases, our solution seems to

outperform existing single-table compression techniques by splitting a policy across multiple

tables. Further, programmers can use our solution to run the same programs on a range of

hardware, requiring simply a change in function arguments to specify the target configuration.

In summary, then, this paper addresses two major objectives:

1. Remove any burden from the programmer posed by the wide variety of switch hardware.

2. Compress the number of rules necessary to implement given policy across network switches,

regardless of the number of tables involved or the formatting demanded by hardware.

5

Contributions

In this report, we present a technique for generating and optimizing policies given a set of

user-specified parameters that describe a switch. Namely, given a policy and:

1. The number of tables in a given switch.

2. The number of fields in each table.

3. The widths of each field.

4. The type of predicates used in each table (a single type or a mixed set of formats).

our algorithm generates and optimizes a set of rule tables to fit the scenario.

Further, we offer a proof-of-concept implementation of the aforementioned technique and

all the algorithms described through several modules written in the OCaml language, located

in the rule-opt repository on GitHub.1 Building on this work, we create a network simulator

and integrate our work with the Desmoines compiler [6].

Finally, we conclude the paper with some results of running our algorithms on sample rulesets

generated by the ClassBench tool [23].

2 Compression algorithms

In this section, we discuss techniques for one- and multi-dimensional compression of flow tables

that use a single, uniform predicate format, concluding with a technique for mixed predicate

optimization. Each of these techniques will be utilized in our generalized algorithm.

Compressing Exact-Match Flow Tables

The simplest compression case is that of exact-match flow tables, as there is no room for

compression: every possible predicate in the domain must be spelled out exactly in the flow

table.

1https://github.com/frenetic-lang/rule-opt

6

Compressing Prefix-Based Flow Tables

The case of optimally compressing prefix-based flow tables in a single dimension has been solved

through the use of dynamic programming. The solution, described by Suri[22], relies on the

concept of consistency, defined as: for every predicate p′ ∈ p, matching p′ on R returns rule a

(in other words, every sub-predicate of p yields the same action a). For example, the policy in

Table 3 is consistent on 0 ∗ ∗ with rule Drop. However, it is not consistent on ∗ ∗ ∗, as some

predicates that match ∗ ∗ ∗ return Drop (e..g, 000), while others return Fwd (e.g., 100).

Table 3: An inconsistent policy
F1

1** Fwd

00* Drop

01* Drop

In brief, the algorithm runs as follows:

1. Let p be a prefix-based predicate of the form {0, 1}k−n∗k = p′∗k, and R a set of rules on

which you’re trying to optimize.

2. If p is consistent on R with action a, return the rule {p, a}.

3. If p is not consistent on R, split p into p0 = p′0∗k−1 and p1 = p′1∗k−1. Recursively

optimize R over p0 and p1 and combine the solutions. This process reduces down to the

base case of an exact predicate {0, 1}n.

This algorithm is extended by Liu et al[10] to optimize prefix-based flow tables on multiple

fields, a technique known as TCAM Razor. TCAM Razor first adjusts the single-dimensional

solution of Suri[22] to operate with actions of weighted cost. In other words: the in the solution

above is implicitly defined as the minimum number of rules produced; instead Liu et al offer an

algorithm in which optimization is defined as the rule table with the minimum total cost of its

weighted actions.

Next, Liu et al attempt to minimize a flow table field-by-field by converting the table into

a Firewall Decision Diagram (FDD). An FDD is essentially a tree in which the edges match

patterns (every pattern must match exactly one edge for a given level) and each level of nodes

represents a different field [9]. Then, they optimize from the leaves upwards as follows:

7

1. For each field, consider the level of the FDD which corresponds to that field.

2. Create a “virtual” one-dimensional prefix-based optimization problem by pairing every

predicate out of the FDD with the sub-FDD to which it points. Label the cost of the

action to be the number of leaves in the sub-FDD (in the base case where the sub-FDD

is an action, the cost is fixed at 1).

3. Optimize this weighted flow table and continue upward.

We include an example here, as the concept described above is essential to understanding

the rest of the paper. Consider the policy in Table 4, for which an FDD is provided in Figure 3.

TCAM Razor would operate by first performing one-dimensional compression on the leaf nodes

of v1 and v2 separately; then, by performing the same compression on the root node with the

two virtual actions “go to v1” and “go to v2”.

Table 4: A sample policy
F1 F2

0* 0* a1
1* 0* a2
** ** a3

Figure 3: A Prefix-Based FDD for Table 4

F1

F2

a1

0*

a3

1*

0*

F2

a2

0*

a3

1*

1*

v1 v2

This idea of considering a set of non-terminal nodes to be “virtual” actions is essential to

many of the compression algorithms described throughout the paper.

TCAM Razor then runs the output of its multi-dimensional optimization through a redun-

dancy remover (more on this below). Note that for cases in which TCAM Razor returns a

larger classifier than was input, the algorithm simply runs the redundancy removal technique

and returns that output instead.

8

Compressing Ternary-Match Flow Tables

Compression of ternary-match rules is handled via a clever conversion from ternary- to prefix-

based flow tables. In short, Liu et al devised an algorithm known as bit weaving in which

they split flow tables into sub-tables and, within those sub-tables, perform a series of swaps to

convert a set of ternary rules to prefix-based rules. For example:

swap2,4(p1 = 0 ∗ 01, p2 = 1 ∗ 10) = (p′1 = 010∗, p′2 = 101∗)

These modified tables are then compressed with a one-dimensional compression algorithm, and

the swaps are performed in reverse to output optimized flow tables [18].

A great advantage of this algorithm is that the multi-dimensional version merely requires

us to concatenate our fields into a single field and, as the final step of the algorithm, split our

predicates into multiple fields.

Compressing Range-Match Flow Tables

The solution to the range-match compression problem is described by Liu[12] and, similar to the

prefix-based solution, uses dynamic programming techniques. To extend to multiple dimensions,

the authors employ an identical technique to TCAM Razor in that they carry out level-by-level

local optimization across the fields of the classifier.

Redundancy Removal

There are various redundancy removal techniques that can be implemented orthogonally to

the above compression techniques (i.e., after compressing, one can run a flow table through a

redundancy remover). There are two major types of redundancy [8]:

1. Upward: a rule r is upward redundant if there are no possible packets whose first matching

rule is r. In Table 5, the final rule is upward redundancy, as any predicate of width three

must match one of the first two rules.

2. Downward: a rule r is downward redundant if every packet that would match r would also

match another rule r′ with the same action as r. In Table 6, the middle rule is downward

redundant, as any rule that would match the middle rule would also match the final rule,

which has the same action.

9

Table 5: Upward redundancy
F1

1** Fwd

0** Drop

*** Fwd

Table 6: Downward redundancy
F1

1** Fwd

00* Drop

*** Drop

Compressing Mixed Flow Tables

The algorithm (“ACL-Compress”) for compressing flow tables in which different fields have

different predicate types is inspired by TCAM Razor and outlined by Liu et al[11]. To be com-

pletely clear, the difference between the problem statement here and any of the aforementioned

compression cases is that in the previous cases, we had rules in which each predicate was of the

same type. For example, in the rule {(F1 = 00∗, F2 = 0 ∗ ∗, F3 = 100)→ Drop}, each field has

a prefix predicate. However, we now examine cases in which the fields have varied types, such

as the rule {(F1 = [0, 17], F2 = 0 ∗ ∗, F3 = 110) → Drop}, which has F1 : range, F2 : prefix,

F3 : exact.

The key observation is that the level-by-level optimization approach used in TCAM Razor

creates a scenario in which we can perform purely local optimizations in an FDD, ignorant

of the optimization at any other level or even any other node. Thus, for any node n in the

FDD with predicates of format f , we can run the one-dimensional rule optimization algorithm

corresponding to f . Then, we can continue compressing as we move upward in the tree. Nowhere

in the specification does it require that any two levels have the same predicate format, as all

optimization is local.

Broadly speaking, the ACL-Compress algorithm thus takes the same structure as TCAM

Razor; however, the single-node compression step is replaced with the following pseudocode:

l et compress at node r u l e s format =

match format with

| p r e f i x b a s e d −> one d pre f i x compre s s r u l e s

| t e rnary −> bit weave r u l e s

| exact −> enumerate a l l r u l e s

| range −> one d range compress r u l e s

All of these algorithms are implemented in rule-opt (more on this later).

10

3 A Tagging Approach

We next examine how to split a single policy between multiple tables using tags. Specifically,

we look at a scenario in which a user provides a policy P over multiple fields and desires, as

output, multiple tables, each containing a subset of the fields in P . For example, we may take

as input a table of the following form:

Src IP Dst IP Src MAC Dst MAC

... Drop

... Fwd

And, given some user specifications, output three tables (in order):

Src IP Dst IP

... ... Tag 0

... ... Tag 1

Tag Src MAC

... ... Tag 1

... ... Tag 0

... ... Tag 1

Tag Dst MAC

... ... Drop

... ... Fwd

Notice that, within this multi-table framework, each table except the last has a ‘Tag’ column

in-place of an ‘Actions’ column, which signifies adding some tagging bits to the packet for use in

processing during the next table. More specifically, to process a packet p within this multi-table

framework, we proceed as follows:

1. For each tagging table ti:

(a) Match p on the fields signified by ti, including the tag appended by the previous

table ti−1 (for the first table, the tag field is empty).

(b) The action of ti will be “tag with n” for some n. Replace p’s current tag with n.

(c) Pass p to the next table.

2. For tfinal, process the packet p and return the resulting action.

What are the advantages of such an approach, and why is it worth examining? Firstly, such

an approach is commonly used in industry, as suggested by Stephens et al[21], so its examination

is evidently worthwhile. Secondly, creating such a pipeline for processing packets (as in Figure

4) poses great potential for parallelism: that is, if we split our single table into n tables, we

11

Figure 4: Packet processing pipeline

T2T1 T3P

can process n packets in parallel, increasing our throughput. Additionally, breaking a multi-

dimensional classifier into multiple, smaller classifiers can reduce information redundancy in

TCAMs, which in turn allows us to use fewer rules to represent our policy [17].

Tagging a table

Our tagging algorithm (“Dynamic-Tag”) relies on the use, once again, of FDDs. We first

consider the problem of tagging a rule set based on a supplied FDD. To do so, we take as

input an FDD and a list L of desired sizes for each output table. We assume that the FDD is

constructed based on the order that the user desires his/her output fields to be present in its

tables. That is, if the user wants two output tables, T1 : {F1, F2} and T2 : {F3}, we assume

L = [2; 1] and the FDD is of the following form:2

F1

F2

F3 F3

F2

F3 F3

F2

F3 F3

Given these inputs, our algorithm is outlined by the following pseudocode:

l et t a g f i r e w a l l fw specs =

l et n = s i z e of next f i e l d de f ined by specs in

let a l l p a t h s = b f s t r a v e r s a l fw hd in

let n e x t t a b l e = map (fun (path , fw ’) −>

(p r i o r t a g : : path , t ag co r r e spond ing to fw ’)) a l l p a t h s in

let r e s t = f o l d (fun path fw ’ acc −>

2Each node can have an arbitrary number of children, as each field can split on an arbitrary number of
predicates.

12

t a g f i r e w a l l fw ’ t l t ag co r r e spond ing to fw ’) path in

next : : r e s t

l et t a g t a b l e r u l e s specs =

l et i n t e r v a l f i r e w a l l = c o n s t r u c t i n t e r v a l f i r e w a l l r u l e s in

let p r e d i c a t e f i r e w a l l = convert i n t e r v a l f i r e w a l l spec s in

t a g f i r e w a l l p r e d i c a t e f i r e w a l l spec s

For each desired output table with n fields, we run a BFS traversal from the current node

to a depth of n, returning a list of edges and nodes at depth n. From this list, we construct a

tag table by assigning each node its own tag and adding a rule for each edge that leads to that

node.

Creating the FDD

We return to the problem of creating the FDD which will be input to the tagging algorithm. The

backbone of the construction is described by Liu and Gouda[9]. However, the FDDs produced

by this algorithm define their edges based on ranges. That is, the predicates on each edge of

the FDD contain range intervals, rather than, say, prefixes.

To work around this issue, we need a set of efficient algorithms for range-to-prefix and range-

to-ternary conversion. Such conversion is not trivial. Consider the case of expressing [1, 14] in

terms of prefixes; this requires six prefix-based predicates: {0001, 001∗, 01∗∗, 10∗∗, 110∗, 1110}.

1. Range-to-prefix conversion: We use the DIRECT algorithm presented by Chang[1],

which provides a worst-case expansion proportional to the binary logarithm of the size of

the interval (i.e., for an interval [1, 2W − 2], DIRECT yields 2W − 2 prefixes), and often

performs much better.

2. Range-to-ternary conversion: We use the compute-dnf algorithm presented by Schieber

et al[20], which always produces a set of ternary predicates of minimum cardinality.

3. Range-to-exact conversion: We merely enumerate every integer in the specified range.

With these algorithms, we can convert an entire FDD from range-based to any combination

of predicate formats. That is, if the user wants as output two tables T1 : {F1, F2} and T2 : {F3},

13

with T1 using prefixes and T2 using ternary-based predicates, we can convert the FDD to the

appropriate formatting as follows (where red indicates prefix-based matching and blue indicates

ternary matching):

F1

F2

F3 F3

F2

F3 F3

F2

F3 F3

The advantage of this approach is that, when we tag our tables using “Dynamic-Tag”, we’re

ensured that the output tables will have the correct predicate formats, as the edges of the FDD

from which the table rules are sourced will already be formatted correctly.

As a worked example, consider the FDD in Figure 5, which corresponds to the policy in

Table 4 on page 8. If the user wanted to match on prefixes for F1 and exact predicates for F2,

we would produce the modified FDD seen in Figure 6.

Figure 5: An Interval FDD for Table 4

F1

F2

a1

[0,1]

a3

[2,3]

[0,1]

F2

a2

[0,1]

a3

[2,3]

[2,3]

Figure 6: A mixed FDD for Table 4

F1

F2

a1

{00,01}

a3

{10,11}

0*

F2

a2

{00,01}

a3

{10,11}

1*

Note that such an FDD can be constructed either:

1. From scratch to represent an entire policy.

14

2. Incrementally by adding one rule at a time to an existing FDD, as long as the rules are

added in priority order.3

After construction, FDDs can be simplified (or reduced) using the FDD Reduction algorithm

of Gouda and Liu[5]. This algorithm is implemented in rule-opt.

4 Tagging: A Worked Example

We now present a fully-worked example of the “Dynamic-Tag” algorithm, which produces a

consistent set of flow tables based on user specifications. In the next section, we will focus on

compressing tables produced by said algorithm.

Consider the policy P in Table 7. In this example, P is the input, along with the following

parameters: the user would like T1 to be a table on fields F1 and F2 that performs prefix-based

matching; and the user would like T2 to be a table on F3 that performs ternary matching.

Table 7: Policy P
F1 F2 F3

101 000 01 Fwd

1** 1** 01 Drop

10* 111 00 Fwd

*** *** ** Drop

An FDD for P (following conversion to the appropriate formats and application of some

FDD reduction techniques) is presented in Figure 7.

We now attempt to tag this FDD. Recall that the user specifications were for a table T1 on

fields F1 and F2, and a table T2 on field F3. Following “Dynamic-Tag”, we run a BFS traversal

to a depth of 2 (to generate T1). This gives us three separate nodes, which we label with the

tags 00, 01, and 10, as in Figure 7. For every path returned by BFS, we create a new rule for

T1 with the action “Tag with n”, depending on which of 00, 01, or 10 were on the end of the

path.

Next, from each of the nodes 00, 01, and 10, we run BFS to a depth of 1. For each path

returned, we add a rule to T2 with the action found at the leaf of the path; this rule will be

prepended with the tag of the node at which the path began.

3We proceed on this assumption in our proof-of-concept implementation of the “Dynamic-Tag” algorithm;
however, further work could be done to develop techniques for incremental FDD modification or deletion.

15

Figure 7: An FDD for P

F1

F2

F3

Drop

1*
01

Fwd

00

111

100

F2

F3

Drop

0**
11*

F2

F3

Drop

1*
00

Fwd

01

000

101

{110, 10*, 0**}

{110, 001, 10*, 01*}
111

0100 10

For example, in the above FDD, following the right-most path down the tree, we’d get a

rule {(F1 = 101, F2 = 000)→ “Tag with 10”} for T1, and a rule {(Tag = 10, F3 = 01)→ Fwd}

in T2.

5 Compressing Tagged Tables

We now discuss compression techniques for our tagged tables. There are several approaches

that we can take depending on the situation, the most practical and realistic of which are:

1. Taking a policy, decomposing it into several tables, and then compressing these tables

individually.

2. Taking a policy, constructing the FDD for that policy, then compressing the FDD level-

by-level and, finally, tagging it.

Specifically, with the first approach, we assume that the programmer would like to receive

an uncompressed set of tables that mirror an input policy, with the ability to compress these

tables later on; with the second approach, we assume the programmer would like to receive a

set of compressed tables as the initial output. Both approaches are useful in different contexts.

Thus, they are both supported in rule-opt.

In the first case (Approach 1), our compression algorithms will be of the form:

16

l et t a g t a b l e r u l e s specs =

l et i n t e r v a l f i r e w a l l = c o n s t r u c t i n t e r v a l f i r e w a l l r u l e s in

let p r e d i c a t e f i r e w a l l = convert i n t e r v a l f i r e w a l l spec s in

t a g f i r e w a l l p r e d i c a t e f i r e w a l l spec s

// c a l l e d on every t ab l e produced by our tagg ing a lgor i thm

l et compres s tab l e r u l e s spec =

match spec with

| p u r e l y p r e f i x −> tcam razor r u l e s

| p u r e l y t e r n a r y −> mul t i d imens i ona l b i t weave r u l e s

| pure l y exac t −> enumerate a l l r u l e s

| pure ly range −> mult i d imens iona l range compres s r u l e s

| mixed −> ac l compres s r u l e s spec

In the latter case (Approach 2):

l et tag and compress r u l e s spec s =

l et i n t e r v a l f i r e w a l l = c o n s t r u c t i n t e r v a l f i r e w a l l r u l e s in

let p r e d i c a t e f i r e w a l l = convert i n t e r v a l f i r e w a l l spec s in

let c o m p r e s s e d f i r e w a l l = compress p r e d i c a t e f i r e w a l l spec s in

t a g f i r e w a l l c o m p r e s s e d f i r e w a l l spec s

There’s an advantage to Approach 2 which is only apparent when handling very large poli-

cies: with Approach 2, you avoid the excessive conversions present in Approach 1. That is, in

Approach 1, if we want to tag then compress a rule table, we have to go from rule table to

firewall to rule table to firewall to rule table. However, in Approach 2, we only have to make

two such conversions (from rule table to firewall to rule table). The savings are very noticeable

when working with large policies, especially as the firewalls produced by the FDD algorithm

are generally much bigger than the rule tables on which they are based.

As a quick aside, we assume that “tag” fields are prefix-based. However, such fields are often

incomplete, i.e., there are certain predicates for which there is no match. To be more specific,

consider a policy which only ends up tagging its sub-nodes with tags ‘00’ and ‘01’. Then, if you

17

try to match on a predicate with tag ‘11’, there will be no matching rule. Compressing tables

with this property is tricky, and to handle it with use a technique outlined by Liu et al[18]. In

short, we consider a flow table R over k fields in which we have rules with actions {a0, a1, ..., an}.

We add another rule to the end of R that spans the domain (i.e., {F1 = ∗, F2 = ∗, ..., Fk = ∗})

and has action an+1. With this rule, the flow table becomes complete. We compress this

complete rule table; the resulting ruleset R′ will have, as its final rule, {F1 = ∗, F2 = ∗, ..., Fk =

∗} and action an+1 due to the very large cost of an+1. We remove this final rule and take the

remainder of R′ as the compressed output.

6 The Rule-Opt Library

All of the work described above is implemented using the OCaml programming language, and

can be found in the rule-opt library on GitHub. Here, we provide an outline of the library and

the functionality it provides through the module-by-module rundown in Table 8.

Table 8: Rule-Opt Modules
Module Functionality

Policy.ml Basic definitions used throughout the library

Predicate.ml Operations over prefix and ternary predicates

Interval.ml Operations over intervals/range

Dynamic.ml Handles single- and multi-dimensional prefix compression

Bitweave.ml Handles single- and multi-dimensional ternary compression

Range.ml Handles single- and multi-dimensional range compression

Redundancy.ml Handles redundancy removal

Conversion.ml A suite of methods for converting between predicate formats

Firewall.ml Allows for construction and reduction of firewalls

Tag.ml Implements the “Dynamic-Tag” algorithm

Compression.ml Implements the generalized compression algorithms

Along with these modules are Testsuite.ml and Main.ml, both of which are compiled into

executables. The former is used for unit-testing, while the latter is used for running compression

simulations.4

We aimed to make the compression techniques in this library highly composable, as com-

posing multiple techniques often leads to great savings. For example: our redundancy removal

algorithm works on any type of input predicate (including ranges), and so can be added as a

4The numbers cited in the Results section are based on simulations run within this library.

18

final step in compression, orthogonal to other techniques. As an additional example of com-

posability, in the mixed tree compression function of Compression.ml, we make the assumption

that our flow tables are input with prefix-based predicates (there are similar functions to be

used for cases in which you make different assumptions). Recall that in this function, we’re

running node-by-node compression based on the type of predicate used at the present node.

Because we assume that input predicates are prefix-based, when compressing to ternary, we

first run the optimal one-dimensional compression algorithm on the prefixes, and then compose

this technique with bit weaving, earning some extra compression.

As a final note, we acknowledge that although this library includes a module for running

range-based compression, such support is not available throughout. That is, the data type

for predicates does not allow for mixing of range-based and other predicate formats. This

is a function of the vast difference between a string of {0,1,*} and a range specified by two

endpoints; thus, adding such support would have required much refactoring (although it is

certainly possible).

7 Integration with the Desmoines Compiler

After developing “Dynamic-Tag” and the modified flow table optimization algorithms described

above, we integrated the Rule-Opt library with the Desmoines Compiler, a framework for writing

and running NetCore programs and simulations. Desmoines is written primarily in OCaml, so

integrating our algorithms into the existing code base was a natural step.

Desmoines: Form and Function

Desmoines provides a controller to handle software defined networks. That is, given some

switches, Desmoines provides an interface for sending messages from a controller to those

switches and vice versa. The most significant such message is a flowMod, which represents

a request by the controller for a switch to modify its flow table.5

Desmoines uses the highly composable NetCore syntax to specify policies, which allows us

to quickly develop complex and expressive network behaviors. The syntax itself is included in

the Appendix.

5An example of a message from switch to controller is the case in which a switch does not know how to process
an incoming packet and instead must send it to the controller for processing.

19

Figure 8: The Desmoines Architecture

App Runtime Compiler Controller Switch

NetworkPlatform

Network

Packet

NetCore Classifiers FlowMods

FlowMods

RulesPackets

Our use case

Desmoines allows programmers to communicate with existing switches. However, we wanted to

provide some functionality by which we could simulate a switch’s packet-processing capabilities.

In effect, we wanted an eval packet function which would allow us to send packets into a network

and receive, as output, a list of packets that emerge from the switch. To do so, we had to create

some additional modules, including:

1. MultiTableNetwork.ml : provides the abstraction for a set of switches (a ‘network’), includ-

ing data structures for holding flow tables for each switch and processing packets. This

module could also call optimization functions from the rule-opt library.

2. NetworkPlatform.ml : encapsulates a network within a platform through which we can

process messages between the controller and the rest of the network in an SDN style.

3. NetworkPlatformTest.ml : a series of tests run over the NetworkPlatform module.

The relationship between these modules and the rest of Desmoines is outlined in Figure 8.

The typical Desmoines flow is in black, with our network simulator in red. Notice that our

new modules allow us to plug in and evaluate packets. All packet evaluation and flow table

optimization is performed by linking to the rule-opt library.

Implementing incremental policy creation

To fit within the Desmoines framework, we needed to allow for each switch to preform incre-

mental updates to its policy. This is due to the fact that, within Desmoines, the controller

20

maintains ownership over a stream of policies, onto which flowMod messages are pushed and

subsequently passed to their intended switches.

To that end, we had each switch maintain a copy of its FDD to-date. This allowed us to

add rules to each switch’s flow table with the following code:

l et mul t i sw i t ch = g e t s w i t ch network id in

let f i r e w a l l ’ = a d d t o t r e e mu l t i sw i t ch . f i r e w a l l r u l e widths in

let r u l e t a b l e s ’ = t a g t r e e f i r e w a l l ’ i n f o num f i e ld s in

let mult i swi tch ’ = { f i r e w a l l ’ ; r u l e t a b l e s ’ } in

mult i swi tch ’

Further, this avoided the unnecessary reconstruction of the FDD representing the switch’s

current flow table.

The successful running of our algorithm within the Desmoines framework, most importantly,

provides a proof-of-concept. That is, integrating our code with Desmoines provides a practical

look into how one could use such techniques as “Dynamic-Tag” to implement policies over

switches in the real world. Additionally, the back-end we’ve developed for simulating packets

across network switches may be useful as the Desmoines project continues to develop and new

modules are written on top of the current platform. The full code can be found on GitHub in

rule-opt/desmoines.

8 Results

We ran our algorithms on several sample policies generated by ClassBench, a tool for generating

network policies that mirror those used in practice [23]. The use of such a tool is necessary, as

no other large database of flow table policies are easily accessible due to security reasons.

Methodology

To start, we define the size of a rule table (the metric off of which we evaluate our algorithms),

which is as follows: for a rule table R of n rules on k fields, each of which has width fk,

size(R) = n ∗ Σk
i=0fk. In other words, the size is the number of rules weighted by the width

of each rule. The usefulness for this metric over, say, raw number of rules in a table, is that

21

often by splitting up a policy into multiple tables, we might increase the number of total rules

spread over the output tables; however, each of these output tables will be on fewer fields, and

often these fields will be of varying widths, all of which plays some role in the memory required

to implement the table in practice. Therefore, we define our metric in such a way as to best

mirror reality.

In order to run our simulations, we carried out the following process:

1. First, we generate a rule set using ClassBench. The sets generated by ClassBench consists

of four fields: F1 and F2, which are prefix-based with widths of size 32; and F3 and F4,

which are range-based with widths of size 16.

2. We next convert these ClassBench sets into purely prefix-based rule sets.

3. Finally, we run our compress and tag algorithm using example specifications. We assume

that the fields retain their initial ordering (i.e., F1, followed by F2...), although this could

be changed quite easily.

Data

Our results table (Table 9) is formatted as follows: In the first column is the name of the

ClassBench seed file on which the rule set in question is based, suffixed with the number of rules

output initially (e.g., ‘fw1 60’ indicates that the fw1 seed was used and 60 rules were output

initially); next, we define P to be the ClassBench rule set following conversion to prefixes, and

include the size of P (raw number of rules in parentheses). In addition, we include P ′, which is

the result of running P under TCAM Razor, including the size of that table as well (again, with

raw number of rules in parentheses) and the compression ratio achieved σ′ (Size(P ′)/Size(P).

After that, we layout a list of specifications for the output tables (e.g., [[T; T]; [P; P]] would

indicate that we map to two tables, each of which has two fields, the first matching only on

ternary and the second only on prefix-based rules); finally, we include the size of the output

tables (summed) and the compression ratio σOut. We exclude the exact predicate format because

of the ceiling it places on the amount of potential compression (and the range predicate for

reasons described above).

Particularly noticeable in these results is that our algorithm is able to find some compression

even when TCAM Razor utterly fails.

22

Table 9: Results of compress and tag
ClassBench Size(P) Size(P ′) σ′ Output spec Size(Out) σOut

fw1 60 8256 (86) 6336 (66) 0.769 [[P; P]; [P; P]] 3872 (90) 0.469

fw2 80 12480 (130) 12480 (130) 1 [[T]; [P]; [T]; P] 7504 (246) 0.602

fw3 80 17568 (183) 17568 (183) 1 [[P; P]; [T; T]] 10944 (282) 0.621

acl1 100 14400 (150) 12672 (132) 0.877 [[P]; [P; T]; [T]] 9168 (273) 0.637

9 Conclusion

To summarize, this paper presents a set of algorithms for performing generalized compression of

policies in network switches. We contextualize our algorithms by acknowledging the diversity in

network hardware, including the fact that different tables in different switches perform matching

on different types of predicates. Along with the general concepts presented in this paper, we

provide: 1) a library (rule-opt) that contains OCaml implementations of all the ideas and

algorithms discussed, and 2) a network simulator, written to utilize the Desmoines compiler, in

which the user can connect switches to a theoretical network, specify the format of their tables,

and then optimize policies supplied in the NetCore language. In the end, we see these libraries

and ideas as helpful in the broader context of creating high-level tools for SDN.

References

[1] Yeim-Kuan Chang. A 2-level TCAM architecture for ranges. IEEE Trans-

actions on Computers, 55(12):1614–1629, 2006. ISSN 0018-9340. doi:

http://doi.ieeecomputersociety.org/10.1109/TC.2006.189.

[2] Understand ACL Resources on Cisco Nexus 5000 Switches. Cisco, August 2011.

[3] Qunfeng Dong, Suman Banerjee, Jia Wang, Dheeraj Agrawal, and Ashutosh Shukla.

Packet classifiers in ternary CAMs can be smaller. SIGMETRICS Perform. Eval. Rev.,

34(1):311–322, June 2006. ISSN 0163-5999. doi: 10.1145/1140103.1140313. URL

http://doi.acm.org/10.1145/1140103.1140313.

[4] N. Foster, A. Guha, M. Reitblatt, A. Story, M.J. Freedman, N.P. Katta, C. Monsanto,

J. Reich, J. Rexford, C. Schlesinger, D. Walker, and R. Harrison. Languages for software-

23

defined networks. Communications Magazine, IEEE, 51(2):128–134, 2013. ISSN 0163-6804.

doi: 10.1109/MCOM.2013.6461197.

[5] Mohamed G. Gouda and Alex X. Liu. Structured firewall design. Comput. Netw., 51

(4):1106–1120, March 2007. ISSN 1389-1286. doi: 10.1016/j.comnet.2006.06.015. URL

http://dx.doi.org/10.1016/j.comnet.2006.06.015.

[6] A. Guha and M. Reitblatt. Desmoines, 2013. URL

https://github.com/frenetic-lang/desmoines. Private repository.

[7] Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker. Optimizing rule place-

ment in software defined networks. Submitted for conference review, 2012.

[8] Alex X. Liu and Mohamed G. Gouda. Complete redundancy detection in firewalls. In

Proceedings of the 19th Annual IFIP WG 11.3 Working Conference on Data and Applica-

tions Security, DBSec’05, pages 193–206, Berlin, Heidelberg, 2005. Springer-Verlag. ISBN

3-540-28138-X, 978-3-540-28138-2.

[9] Alex X. Liu and Mohamed G. Gouda. Diverse firewall design. IEEE Trans. Parallel Distrib.

Syst., 19(9):1237–1251, September 2008. ISSN 1045-9219.

[10] Alex X. Liu, Chad R. Meiners, and Eric Torng. TCAM Razor: a systematic approach

towards minimizing packet classifiers in TCAMs. IEEE/ACM Trans. Netw., 18(2):490–

500, April 2010. ISSN 1063-6692.

[11] Alex X. Liu, Eric Torng, and Chad R. Meiners. Compressing network access control lists.

IEEE Trans. Parallel Distrib. Syst., 22(12):1969–1977, December 2011. ISSN 1045-9219.

doi: 10.1109/TPDS.2011.114. URL http://dx.doi.org/10.1109/TPDS.2011.114.

[12] A.X. Liu, E. Torng, and C.R. Meiners. Firewall compressor: An algorithm for minimizing

firewall policies. In INFOCOM 2008. The 27th Conference on Computer Communications.

IEEE, pages 176–180, 2008. doi: 10.1109/INFOCOM.2008.44.

[13] R. McGeer and P. Yalagandula. Minimizing rulesets for TCAM implementation. In IN-

FOCOM 2009, IEEE, pages 1314–1322, 2009. doi: 10.1109/INFCOM.2009.5062046.

24

[14] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jen-

nifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: enabling innovation in

campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March 2008. ISSN

0146-4833.

[15] Chad R. Meiners, Alex X. Liu, and Eric Torng. Hardware Based Packet Classification for

High Speed Internet Routers. Springer, 2010.

[16] Chad R. Meiners, Alex X. Liu, and Eric Torng. Topological transformations. In Hard-

ware based packet classification for high speed internet routers, chapter 8, pages 101–119.

Springer, 2010.

[17] Chad R. Meiners, Alex X. Liu, and Eric Torng. Sequential decomposition. In Hardware

based packet classification for high speed internet routers, chapter 7, pages 75–101. Springer,

2010.

[18] Chad R. Meiners, Alex X. Liu, and Eric Torng. Bit weaving: a non-prefix approach to

compressing packet classifiers in TCAMs. IEEE/ACM Trans. Netw., 20(2):488–500, April

2012. ISSN 1063-6692.

[19] Open Networking Summit. Software defined networking revolution, April 2013. URL

http://visual.ly/software-defined-networking-revolution.

[20] Baruch Schieber, Daniel Geist, and Ayal Zaks. Computing the minimum dnf rep-

resentation of boolean functions defined by intervals. Discrete Appl. Math., 149(1-

3):154–173, August 2005. ISSN 0166-218X. doi: 10.1016/j.dam.2004.08.009. URL

http://dx.doi.org/10.1016/j.dam.2004.08.009.

[21] Brent Stephens, Alan Cox, Wes Felter, Colin Dixon, and John Carter. PAST: scalable

ethernet for data centers. In Proceedings of the 8th international conference on Emerging

networking experiments and technologies, CoNEXT ’12, pages 49–60, New York, NY, USA,

2012. ACM. ISBN 978-1-4503-1775-7.

[22] Suri Subhash, Tuomas Sandholm, and Priyank Warkhede. Compressing two-dimensional

routing tables. Algorithmica, 35:287–300, April 2003.

25

[23] David E. Taylor and Jonathan S. Turner. Classbench: a packet classification benchmark.

IEEE/ACM Trans. Netw., 15(3):499–511, June 2007. ISSN 1063-6692. doi: 10.1109/T-

NET.2007.893156. URL http://dx.doi.org/10.1109/TNET.2007.893156.

[24] Rihua Wei, Yang Xu, and H Jonathan Chao. Block permutations in boolean space to

minimize TCAM for packet classification.

Appendix

NetCore Policy Language

type p r e d i c a t e =

| And of p r e d i c a t e ∗ p r e d i c a t e

| Or of p r e d i c a t e ∗ p r e d i c a t e

| Not of p r e d i c a t e

| Al l

| NoPackets

| Switch of swi tchId

| InPort of port Id

| DlSrc of Int64 . t

| DlDst of Int64 . t

| SrcIP of Int32 . t

| DstIP of Int32 . t

| TcpSrcPort of i n t (∗∗ 16− b i t s , i m p l i c i t l y IP ∗)

| TcpDstPort of i n t (∗∗ 16− b i t s , i m p l i c i t l y IP ∗)

type ac t i on =

| To of i n t

| ToAll

| GetPacket of ge t packe t hand l e r

type p o l i c y =

26

| Pol of p r e d i c a t e ∗ ac t i on l i s t

| Par of p o l i c y ∗ p o l i c y (∗∗ p a r a l l e l composi t ion ∗)

| Seq of p o l i c y ∗ p o l i c y

| R e s t r i c t of p o l i c y ∗ p r e d i c a t e

| Empty

27

