
Styling React Components
How to Escape from Selector Hell

Charlie Marsh
Khan Academy

July 9, 2014

“My only beef with CSS is the entire idea of ‘selectors’.
If we could get rid of those, [CSS would be] much more

predictable [and] easy.”

- Pete Hunt, React Guru

Selectors
“Patterns used to select the element(s) you want to style.”

div { ... }
<div>
 ...
</div>

Selector: Applies to:

div p { ... }

Selector: Applies to:

<div>
 <p>
 ...
 </p>
</div>

“Wow, selectors seem really cool!”

Selectors: Extended

div > p
!
div + p
!
div ~ p
!
div p:last-child

div.foo ~ div.bar:after > span:last-of-type + a:visited

<div>
 <p>Line one</p>

 <p>Line two</p>

 <p>Line three</p>
</div>
<p>Line four</p>
<p>Line five</p>

“But Charlie, no one really does that!”

“But Charlie, no one I work with
really does that!”

Selectors @ KA

input[type="radio"]:checked +
span:before

.framework-thing .paragraph >
ul:not(.thing-widget-radio)

.thing-content > .container .thing-content-view-root
> .content-pane-inner .main-header > .topic-info
> .topic-icon

1. You don’t know what will happen when…
you actually load your webpage.

2. You don’t know what will happen when…
you change anything in the DOM.

3. You don’t know what will happen when…
you change anything in your stylesheet.

Result:!
Selectors make it very,
very difficult to refactor.

Preprocessors
• Preprocessors do make CSS easier

• Solve the “unpredictable cascading” problem

• What do they do wrong?

#main {
 width: 97%;
!

 p, div {
 font-size: 2em;
 a { font-weight: bold; }
 }
!

 pre { font-size: 3em; }
}

body {
 div.container {
 div.content {
 div.articles {
 & > div.post {
 div.title {
 h1 {
 a {
 }
 }
 }

“Wow, this is a mess! What can we do?”

- Audience member

Back to React
• Aiming for:

• Modularity

• Composability

• Maintainability

• Stylesheets and selectors can poison your
components

Solution #1:
Stylesheets as Dependencies

// Applying a stylesheet
var css = require("style!css!./file.css");
!
// Chaining loaders
var css = require("style!css!less!./file.less");

• Goal: Make React component <—> stylesheet
relationship explicit

• Implemented in Webpack (Browserify alternative)

Solution #2: Inlining
• Goal: Put all styling in your JavaScript file

var styles = StyleSheet.create({
 base: {
 width: 38,
 height: 38
 }
});

!

var styles = {
 base: {
 width: 38,
 height: 38
 }
};

Solution #3: RCSS
• Goal: Convert JS style objects into CSS classes

var button = {
 padding: '6px 12px',
};
!
// Add class to HTML page
RCSS.createClass(button);

<button className={button.className}>

Progress
• Joel moved react-components over to RCSS

• Charlie moved three Perseus widgets (+ some
miscellaneous components) over to RCSS

• Scattered development taking place on our own
fork (Khan/RCSS)

LESSons

1. Don’t be afraid to style from within your JavaScript
file

2. Avoid adding deeply nested selectors (follow the
Inception Rule)

3. Avoid mimicking the DOM

http://thesassway.com/beginner/the-inception-rule

Result:!
React components as
they’re meant to be.

